⇔ x 2 + y 2 + z - 3 2 = 8 x - 4 2 + y - 4 2 + z - 3 2 = 4 ( x - 1 2 + y - 1 2 + z - 1 2 )
⇔ x 2 + y 2 + z - 3 2 = 8 x - 4 2 + y - 4 2 + z - 3 2 = 4 ( x - 1 2 + y - 1 2 + z - 1 2 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y-z-3=0 và hai điểm A(1;1;1) và B(-3;-3;-3). Mặt cầu (S) đi qua hai điểm A, B tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc đường tròn cố định. Tính bán kính đường tròn đó.
A. R=4
B. R=6
C. R = 2 33 3
D. R = 2 11 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y-z-3=0 và hai điểm A(1;1;1), B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tìm bán kính R của đường tròn đó.
A. R = 4
B. R = 2 33 3
C. R = 2 11 3
D. R = 6
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y+z = 0 và hai điểm A(1;1;1),B(-3;-3;-3) Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tìm bán kính R của đường tròn đó.
A. R=4
B. R = 2 33 3
C. R = 2 11 3
D. R=6
Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 2 ) 2 = 9 và ba điểm A(1;0;0);B(2;1;3);C(0;2;-3). Biết rằng quỹ tích các điểm M thỏa mãn MA 2 + 2 . MB → . MC → = 8 là đường tròn cố định, tính bán kính r đường tròn này.
A. r= 3 .
B. r= 3.
C. r= 6
D. r= 6
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y + 2 ) 2 + z 2 = 4 và các điểm A(-2;0;-2 2 ), B(-4;-4;0). Biết rằng tập hợp các điểm M thuộc (S) và thỏa mãn MA 2 + MO → . MB → = 16 là đường tròn. Tính bán kính đường tròn đó.
A. 3 2 4
B. 3 2
C. 3 7 4
D. 5 2
Trong không gian Oxyz, cho hai điểm A(2;2;2), B(2;4;−6) và mặt phẳng (P): x+y+z=0. Tập hợp các điểm M thuộc (P) sao cho ∠ A M B = 90 ° là một đường tròn có bán kính bằng
A. 2 2
B. 17
C. 13
D. 14
Trong mặt phẳng tạo độ Oxyz, cho bốn điểm A(0;-1;2), B(2;-3;0), C(-2;1;1), D(0;-1;3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức M A → . M B → = M C → . M D → = 1 . Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
A. r = 11 2
B. r = 7 2
C. r = 3 2
D. r = 5 2
Trong không gian Oxyz, cho mặt cầu S : x - 2 2 + y - 4 2 + z - 6 2 = 24 và điểm A(-2;0;-2). Từ A kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω). Từ điểm M di động nằm ngoài (S) và nằm trong mặt phẳng chứa (ω) kẻ các tiếp tuyến đến (S) với các tiếp điểm thuộc đường tròn (ω'). Biết rằng khi hai đường tròn (ω), (ω') có cùng bán kính thì M luôn thuộc một đường tròn cố định. Tìm bán kính r của đường tròn đó.
A. 6 2
B. 3 10
C. 3 5
D. 3 2