Đáp án D
M ' 3 ; − 2 ; 0 , N ' 1 ; 0 ; 0 ⇒ M ' N ' = − 2 2 + 2 2 = 2 2
Đáp án D
M ' 3 ; − 2 ; 0 , N ' 1 ; 0 ; 0 ⇒ M ' N ' = − 2 2 + 2 2 = 2 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3), B(3;-2;1) và mặt phẳng (P): x+ y-z-3=0. Gọi M,N lần lượt là hình chiếu của A và B lên mặt phẳng (P). Tính độ dài đoạn thẳng MN
A. 2 6
B. 4 3
C. 24
D. 3 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1 ; 2 ; 3 , B 3 ; − 2 ; 1 và mặt phẳng P : x + y − z − 3 = 0 . Gọi M, N lần lượt là hình chiếu của A và B lên mặt phẳng (P). Tính độ dài đoạn thẳng MN.
A. 2 6
B. 4 3
C. 24
D. 3 2
Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1;2;1), B(3;0;-1) và mặt phẳng (P):x+y-z-1=0. Gọi M và N lần lượt là hình chiếu của A và B trên mặt phẳng (P). Tính độ dài đoạn MN.
A. 2 3
B. 4 2 3
C. 2 3
D. 4
Trong không gian với hệ trục Oxyz cho hai điểm A 1 ; 2 ; 1 , B 3 ; 0 ; - 1 và mặt phẳng (P) có phương trình x + y − z = 0. Gọi M và N lần lượt là hình chiếu của A và B trên mặt phẳng (P). Tính độ dài đoạn MN
A. 2 3
B. 4 2 3
C. 2 3
D. 4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ toạ độ Oxyz, cho điểm A(9;-3; 5),B(a;b; c). Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ (Oxy),(Oxz)và(Oyz). Biết M, N, P nằm trên đoạn AB sao cho AM=MN=NP=PB. Giá trị của tổng a+b+c là
A. -21
B. -15
C. 15
D. 21
Trong không gian với hệ tọa độ Oxyz cho điểm A(4 ;-3 ;2). Hình chiếu vuông góc của A lên các trục tọa độ Ox, Oy, Oz theo thứ tự lần lượt là M, N, P. Phương trình mặt phẳng (MNP) là
A. 4x - 3y + 2z - 5 = 0
B. 3x - 4y + 6z - 12 = 0
C. 2x - 3y + 4z - 1 = 0
D. x 4 - y 3 + z 2 + 1 = 0
Trong không gian với hệ tọa độ Oxyz cho hai điểm M(1;2;3), N(3;4;5) và mặt phẳng P : x + 2 y + 3 z - 14 = 0 . Gọi ∆ là đường thẳng thay đổi nằm trong mặt phẳng (P). Gọi H, K lần lượt là hình chiếu vuông góc của M, N trên ∆ . Biết rằng khi M H = N K thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của đường thẳng d là
A. x = 1 y = 13 - 2 t z = - 4 + t
B. x = t y = 13 - 2 t z = - 4 + t
C. x = t y = 13 + 2 t z = - 4 + t
D. x = t y = 13 - 2 t z = - 4 - t
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ : x - m 1 = y + 1 - 2 = z + m 2 1 và hai điểm M(-1;4;1),N(3;-2;0). Gọi H, K lần lượt là hình chiếu vuông góc của M, N lên Δ. Khối tứ diện HKMN có thể tích nhỏ nhất bằng
A. 9 2
B. 5 3 4
C. 55 22
D. 2 5