CHO \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
cmr \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-3;2); B(3;5;-2). Phương trình mặt phẳng trung trực của AB có dạng x + a y + b z + c = 0. Khi đó a+b+c bằng
A. -4.
B. -3.
C. 2.
D. -2.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1 ; − 3 ; 2 , B 3 ; 5 ; − 2 . Phương trình mặt phẳng trung trực của AB có dạng x + a y + b z + c = 0 . Khi đó a + b + c bằng
A. -4
B. -3
C. 2
D. -2
Trong không gian hệ tọa độ Oxyz, cho hai điểm A(1;-3;2), B(3;5;-2). Phương trình mặt phẳng trung trực của đoạn thẳng AB có dạng x + ay + bz + c = 0. Khi đó a + b + c bằng
A. -2
B. -4
C. -3
D. 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 2 1 = y + 1 1 = z + 1 2 và ∆ : x - 3 1 = y + 1 1 = z + 3 2 . Viết phương trình mặt phẳng (P) chứa d và tạo với tam giác một góc 30 ° . có dạng x + ay + bz + c = 0 với a , b , c , ∈ ℤ khi đó giá trị a + b + c là
A. 8
B. -8
C. 7
D. -7
Trong không gian O x y z , cho hai điểm A 1 ; − 3 ; 2 , B 3 ; 5 ; − 2 . Phương trình mặt phẳng trung trực của đoạn AB có dạng x + a y + b z + c = 0. Khi đó a + b + c bằng
A. -3
B. 2
C. 4
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : a x + b y + c z - 9 = 0 đi qua hai điểm A 3 ; 2 ; 1 , B - 3 ; 5 ; 2 và vuông góc với mặt phẳng Q : 3 x + y + z + 4 = 0 . Tính tổng S = a + b + c
A. S = -12
B. S = 21
C. S = -4
D. S = 7
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − y + 2 z + 2 = 0 và điểm A(1;-2;0). Mặt phẳng α song song với (P) và cách A một khoảng bằng 2 có dạng 2 x + a y + b z + c = 0 . Khi đó, tổng a + b + c bằng bao nhiêu?
A. -1
B. -10
C. -9
D. 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 16 và các điểm A 1 ; 0 ; 2 , B − 1 ; 2 ; 2 . Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax+by+cz+3=0. Tính tổng T=a+b+c
A. 3
B. -3
C. 0
D. -2