Chọn D.
Cách giải:
* Xét mặt phẳng chứa AB và d : Gọi A’ là điểm đối xứng của A qua Δ ; α là mặt phẳng qua A, vuông góc với d
Chọn D.
Cách giải:
* Xét mặt phẳng chứa AB và d : Gọi A’ là điểm đối xứng của A qua Δ ; α là mặt phẳng qua A, vuông góc với d
Trong không gian Oxyz, cho hai đường thẳng d : x = 1 + t y = 2 - t z = t , d ' : x = 2 t ' y = 1 + t ' z = 2 + t ' . Đường thẳng ∆ cắt d, d ' lần lượt tại các điểm A, B thỏa mãn độ dài đoạn thẳng AB nhỏ nhất. Phương trình đường thẳng ∆ là
A. x - 1 - 2 = y - 2 1 = z 3
B. x - 4 - 2 = y - 1 = z - 2 3
C. x 2 = y - 3 - 1 = z + 1 - 3
D. x - 2 - 2 = y - 1 1 = z - 1 3
Trong không gian Oxyz, cho điểm A 1 ; 2 ; - 1 , đường thẳng d: x - 1 2 = y + 1 1 = z - 2 - 1 và mặt phẳng (P): x + y + 2 z + 1 = 0 . Điểm B thuộc mặt phẳng (P) thỏa mãn đường thẳng AB vuông góc và cắt đường thẳng d. Tọa độ điểm B là
A. 3 ; - 2 ; - 1
B. - 3 ; 8 ; - 3
C. 0 ; 3 ; - 2
D. 6 ; - 7 ; 0
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng x = 1 + t y = 2 − t z = t , d ' : x = 2 t ' y = 1 + t ' z = 2 + t ' . Đường thẳng ∆ cắt d , d ' lần lượt tại các điểm A, B thỏa mãn độ dài đoạn thẳng AB nhỏ nhất. Phương trình đường thẳng ∆ là
A. x − 1 − 2 = y − 2 1 = z 3 .
B. x − 4 − 2 = y − 1 = z − 2 3 .
C. x 2 = y − 3 − 1 = z + 1 − 3 .
D. x − 2 − 2 = y − 1 1 = z − 1 3 .
Trong không gian Oxyz, cho các điểm A(2 ;1 ;0),B(0 ;4 ;0),C(0,2,-1) Biết đường thẳng ∆ vuông góc với mặt phẳng (ABC) và cắt đường thẳng d : x - 1 2 = y + 1 1 = z - 2 3 tại điểm D(a ;b ;c) thỏa mãn a > 0 và tứ diện ABCD có thể tích bằng 17/6. Tổng a+b+c bằng
A. 5
B. 4
C. 7
D. 6
Trong không gian Oxyz, cho điểm A(4;2;-3) và hai đường thẳng d 1 : x 4 = y 6 = z − 1 , d 2 : x = − 1 + 2 t y = 2 + 3 t z = 4 − t . Đường thẳng d đi qua điểm A, đồng thời vuông góc với hai đường thẳng d 1 , d 2 có phương trình là:
A. x = 3 + 4 t y = − 2 + 2 t z = − 3 − 3 t
B. x = 4 + 2 t y = 2 + 3 t z = − 3 − t
C. x = 4 + 3 t y = 2 + 2 t z = − 3
D. x = 4 + 3 t y = 2 − 2 t z = − 3
Trong không gian Oxyz, cho 2 điểm A(2; 1; 4), B(-4; 3; -2) và cho đường thẳng d : x + 3 1 = y - 2 1 = z + 7 2 . Tìm tọa độ điểm M thuộc d sao cho OM vuông góc với AB
A. M(-3; 2; -7)
B. M(-6; 2; -6)
C. M(1; 6; 1)
D. M(-1; -6; -1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 2 ; − 1 , đường thẳng d : x − 1 2 = y + 1 1 = z − 2 − 1 và mặt phẳng P : x + y + 2 z + 1 = 0 . Điểm B thuộc mặt phẳng P thỏa mãn đường thẳng AB vuông góc và cắt đường thẳng d. Tọa độ điểm B là
A. 3 ; − 2 ; − 1
B. − 3 ; 8 ; − 3
C. 0 ; 3 ; − 2
D. 6 ; − 7 ; 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 2 1 = z - 1 2 , A(2 ;1 ;4). Gọi H(a ;b ;c) là điểm thuộc d sao cho AH có độ dài nhỏ nhất. Tính T = a 3 + b 3 + c 3
A. T=13
B. T = 5
C. T=8
D. T=62
Trong không gian Oxyz, cho hai điểm A(1;-2;3),B(-3;0;1) và đường thẳng d: x - 2 1 = y + 1 2 = z + 1 - 2 . Điểm M(a;b;c) thuộc d sao cho M A 2 + M B 2 nhỏ nhất. Giá trị biểu thức a+b+c bằng
A. -1.
B. 2.
C. 1.
D. -2.