Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 1 2 = z - 3 - 2 và mặt phẳng (P): 2x - 2y + z - 3 = 0, phương trình đường thẳng ∆ nằm trong mặt phẳng (P), cắt d và vuông góc với d là
A. x = 2 - 2 t y = 1 - 5 t z = - 5 - 6 t
B. x = - 2 - 2 t y = - 1 - 5 t z = 5 - 6 t
C. x = - 2 - 2 t y = - 1 + 5 t z = 5 - 8 t
D. x = - 2 - 2 t y = 1 - 5 t z = 5 + 6 t
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( α ) : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng ( α ) , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 .Viết phương trình đường thẳng ∆ nằm trong mặt phẳng P đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 3 2 . Viết phương trình chính tắc của đường thẳng∆nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 và mặt phẳng ( P ) : x + 2 y – 3 z + 4 = 0 . Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng ∆ là:
A. x = 1 - 3 t y = - 2 + 3 t z = - 1 + t
B. x = - 3 + 2 t y = 1 - t z = 1 + t
C. x = - 3 - 3 t y = 1 + 2 t z = 1 + t
D. x = - 3 + t y = 1 - 2 t z = 1 - t
Trong không gian Oxyz cho 2 đường thẳng d 1 : x + 3 2 = y + 2 - 1 = z + 2 - 4 ; d 2 : x + 1 3 = y + 1 2 = z - 2 3 và mặt phẳng ( P ) : x + 2 y + 3 z - 7 = 0 Đường thẳng vuông góc với mặt phẳng (P), cắt d 1 và d 2 có phương trình là:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
Trong không gian với hệ tọa độ Oxyz cho đường thẳng ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng ∆ là