Đáp án B
Phương pháp
Khoảng cách từ M đến α là
Cách giải: Khoảng cách từ A đến α là:
Đáp án B
Phương pháp
Khoảng cách từ M đến α là
Cách giải: Khoảng cách từ A đến α là:
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng P : x - 2 y + 2 z - 5 = 0 . Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = 1 ; b ; c khi đó b c bằng
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng ( α ) : x+2y-3z-3=0. Gọi M là giao điểm của d với ( α ) , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng ( α )
A. 2
B. 3.
C. 6.
D. 14
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng (P): x-2y+2z-5=0. Viết phương trình chính tắc của đường thẳng d đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ B đến d nhỏ nhất.
A. x + 3 26 = y 11 = z - 1 - 2
B. x + 3 26 = y - 11 = z - 1 2
C. x + 3 26 = y 11 = z - 1 2
D. x + 3 - 26 = y 11 = z - 1 - 2
Trong không gian Oxyz, khoảng cách giữa mặt phẳng α : 2x+4y+4z+1=0 và mặt phẳng β : x+2y+2z+2=0 bằng
A. 3 2
B. 1 3
C. 1 2
D. 1
Trong mặt phẳng tọa độ Oxyz, cho mặt phẳng
( α ): x -2y + 2z - 11 = 0 và điểm M (0;1;1). Tính
khoảng cách h từ điểm M đến mặt phẳng ( α ).
A. h = 1
B. h = 2
C. h = 3
D. h = 4
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 3
B. 7 2
C. 21 2
D. 3 2
Trong không gian Oxyz, cho mặt phẳng (α): 2x+y-2z-2=0, đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A ( 1 2 ; 1 ; 1 ) . Gọi Δ là đường thẳng nằm trong mặt phẳng (α), song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/2
B. 21 / 2
C. 7/3
D. 3/2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : 2 x - 2 y + z - 3 = 0 và điểm M(1;-2;13). Tính khoảng cách từ điểm M đến mặt phẳng (a).
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và điểm A(1;-2; 3). Tính khoảng cách từ điểm A đến mặt phẳng (P).
A. 7 3
B. 2
C. 14 2
D. 1