Ta có phương trình đoạn chắn của 3 điểm M ( 2;0;0 ), N ( 0;-1;0 ), P ( 0;0;2 ) là x 2 + y - 1 + z 2 = 1
Đáp án cần chọn là D
Ta có phương trình đoạn chắn của 3 điểm M ( 2;0;0 ), N ( 0;-1;0 ), P ( 0;0;2 ) là x 2 + y - 1 + z 2 = 1
Đáp án cần chọn là D
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t
Trong không gian Oxyz, cho mặt phẳng ( P ) : x + y + z - 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Đường thẳng d’ đối xứng với d qua mặt phẳng (P) có phương trình là
A. x - 1 1 = y - 1 - 2 = z - 1 7
B. x - 1 1 = y - 1 2 = z + 1 - 7
C. x - 1 1 = y + 1 - 2 = z + 1 7
D. x + 1 - 1 = y - 1 2 = z - 1 - 7
Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-3=0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z + 1 5
B. x - 1 3 = y + 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 4 1 = z + 5 1
Trong không gian Oxyz, cho mặt phẳng (P): x+y +z -3 = 0 và đường thẳng d : x 1 = y + 1 2 = z - 2 - 1 . Hình chiếu vuông góc của d trên (P) có phương trình là
A. x + 1 - 1 = y + 1 - 4 = z - 2 - 1
B. x - 1 3 = y - 1 - 2 = z - 1 - 1
C. x - 1 1 = y - 1 4 = z - 1 - 5
D. x - 1 1 = y - 1 1 = z + 5 1
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P = x + y + z − 3 = 0 và đường thẳng d : x 1 = y + 1 2 = z − 2 − 1 . Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
A. x + 1 1 = y + 1 2 = z + 1 7
B. x + 1 1 = y + 1 − 2 = z + 1 7
C. x − 1 1 = y − 1 2 = z − 1 7
D. x − 1 1 = y − 1 − 2 = z − 1 7
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian Oxyz, cho ba điểm M(2;0;0); N(0;-1;0); P(0;0;2). Mặt phẳng (MNP) có phương trình là:
A. x - 2 + y - 1 + z 2 = 0
B. x 2 + y - 1 + z 2 = - 1
C. x 2 + y 1 + z 2 = - 1
D. x 2 + y - 1 + z 2 = 1