Trong không gian với hệ tọa độ Oxyz, phương trình của đường thẳng đi qua điểm M 2 ; − 1 ; 1 và vuông góc với hai đường thẳng d 1 : x 1 = y + 1 − 1 = z − 2 & d 2 : x = t y = 1 − 2 t z = 0 ( t ∈ ℝ ) là
A. x − 2 4 = y + 1 − 2 = z − 1 1 .
B. x + 2 4 = y + 3 2 = z 1 .
C. x − 2 3 = y + 1 2 = z − 1 − 1 .
D. x − 2 1 = y + 1 − 2 = z − 1 1 .
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng x = 1 + t y = 2 + t z = 3 . Gọi ∆ là đường thẳng đi qua A ( 1 ; 2 ; 3 ) và có vectơ chỉ phương u ⇀ = ( 0 ; - 7 ; - 1 ) . Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A. d : x = 1 + 5 t y = 2 - 2 t z = 3 - t
B. d : x = 1 + 6 t y = 2 + 11 t z = 3 + 8 t
C. d : x = - 4 + 5 t y = - 10 + 12 t z = - 2 + t
D. d : x = - 4 + 5 t y = - 10 + 12 t z = 2 + t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y - 4 z = 0 , đường thẳng d : x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vecto chỉ phương của đường thẳng ∆ . Tính b+c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua gốc tọa độ O, vuông góc với trục Ox và vuông góc với đường thẳng ∆ : x = 1 + t y = 2 - t z = 1 - 3 t . Phương trình của d là
A. x = t y = 3 t z = - t
B. x = t y = - 3 t z = - t
C. x 1 = y 3 = z - 1
D. x = 0 y = - 3 t z = t
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1), mặt phẳng (P): x–2y+z-1=0 và đường thẳng d: x 1 = y - 2 2 = z + 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
A. x - 1 1 = y + 1 1 = z - 1 1
B. x - 1 15 = y + 1 7 = z - 1 1
C. x - 1 4 = y + 1 1 = z - 1 - 2
D. x - 1 13 = y + 1 6 = z - 1 - 1
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng d đi qua điểm A ( 1 ; 2 ; 1 ) và vuông góc với mặt phẳng ( P ) : x − 2 y + z − 1 = 0 có dạng
A. d : x + 1 1 = y + 2 − 2 = z + 1 1 .
B. d : x + 2 1 = y − 2 = z + 2 1 .
C. d : x − 1 1 = y − 2 2 = z − 1 1 .
D. d : x − 2 2 = y − 4 = z − 2 2 .
Trong không gian với hệ tọa độ Oxyz, gọi d đi qua điểm A ( 1;-1;2 ) , song song với (P): 2x - y - z + 3 = 0, đồng thời tạo với đường thẳng ∆ : x + 1 1 = y - 1 - 2 = z 2 một góc lớn nhất. Phương trình đường thẳng d là.
A. x - 1 1 = y + 1 - 5 = z - 2 7
B. x - 1 4 = y + 1 - 5 = z + 2 7
C. x - 1 4 = y + 1 5 = z - 2 7
D. x - 1 1 = y + 1 - 5 = z - 2 - 7
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 1 = y - 1 2 = z + 1 - 1 và điểm A(5;4;-2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là