Đáp án B
Cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được C 4 3 = 4 mặt phẳng. Có thể thấy đáp án bài này qua hình tứ diện.
Đáp án B
Cứ ba điểm không thẳng hàng xác định được một mặt phẳng. Với bốn điểm không đồng phẳng có thể xác định được C 4 3 = 4 mặt phẳng. Có thể thấy đáp án bài này qua hình tứ diện.
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
A. 6
B. 4
C. 2
D. 2
Trong không gian cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
A. 6
B. 4
C. 3
D. 2
Trong không gian cho 10 điểm phân biệt trong đó không có bốn điểm nào đồng phẳng. Từ các điểm trên ta lập được bao nhiêu véctơ khác nhau, không kể véctơ không?
A. 20
B. 60
C. 100
D. 90
Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
A. 15
B. 20
C. 60
D. Một số khác
Trong mặt phẳng, có 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
Trên mặt phẳng cho 6 điểm phân biệt A, B, C, D, E; F. Hỏi có bao nhiêu vectơ khác vectơ – không, mà có điểm đầu và điểm cuối là các điểm đã cho ?
A. 100.
B. 120.
C. 30.
D. 25.
Cho các phát biểu sau, số phát biểu đúng:
1. Có một và chỉ một đường thẳng đi qua 2 điểm phân biệt
2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt
3. Nếu 1 đường thẳng có 1 điểm thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó
4. Tồn tại 4 điểm không cùng thuộc một mặt phẳng
5. Tồn tại 4 điểm cùng thuộc một mặt phẳng
6. Nếu 2 mặt phẳng phân biệt có 1 điểm chung thì chúng sẽ còn 1 điểm chung khác
7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng có thể không đúng
A. 3
B. 4
C. 5
D. 6
1. cho tứ giác ABCD. Có thể xác định bao nhiêu mặt phẳng chứa tất cả các đỉnh của tứ giác ABCD. Kể tên
2. Trong các khẳng định sau khẳng định nào đúng
A. qua 2 điểm phân biệt có duy nhất 1 mặt phẳng
B. qua 3 điểm phân biệt bất kì có duy nhất 1 mặt phẳng
C. qua 3 điểm không thẳng hàng có duy nhất 1 mặt phẳng
D. qua 4 điểm phân biệt bất kì có duy nhất 1 mặt phẳng
3. cá yếu tố nào sau đây xác định 1 mặt phẳng duy nhất
A. 3 điểm phân biệt
B. 1 điểm và 1 đường thẳng
C. 2 đường thẳng cắt nhau
D. 4 điểm phân biệt
Cho 4 điểm không đồng phẳng. Số mặt phẳng phân biệt mà mỗi mặt phẳng đi qua ba trong bốn điểm đó là:
A. 1
B. 2
C. 3
D. 4