Trong khai triển nhị thức ( x + 1 x ) n hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Cho nhị thức x + 1 x n , x ≠ 0 trong tổng số các hệ số của khai triển nhị thức đó là 1024. Khi đó số hạng không chứa x trong khai triển nhị thức đã cho bằng
A. 252
B. 125
C. -252
D. 525
Gọi a là hệ số không chứa x trong khai triển khai triển nhị thức Niu-tơn x 2 − 2 x n = C n 0 x 2 n + C n 1 x 2 n − 1 − 2 x + … + C n n − 1 x 2 − 2 x n − 1 + C n n − 2 x n (n là số nguyên dương).
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a
A. a = 11520
B. a = 11250
C. a = 12150
D. a = 10125
Gọi a là hệ số không chứa x trong khai triển nhị thức Niu – tơn:
x 2 − 2 x n = C n 0 x 2 n + C n 1 x 2 n − 1 − 2 x + ... + C n n − 1 x 2 − 2 x n − 1 + C n n − 2 x n n ∈ ℕ * .
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a
A. a = 11520
B. a =11250
C. a = 12150
D. a = 10125
Tổng các hệ số nhị thức Niu – tơn trong khai triển ( 1 + x ) 3 n bằng 64. Số hạng không chứa x trong khai triển ( 2 n x + 1 2 n x 2 ) 3 n là
A. 360
B. 210
C. 250
D. 240
Hệ số của số hạng chứa x 7 trong khai triển nhị thức Newton x − 1 x 2 10 là
A. C 10 2
B. C 10 7
C. - 10
D. 10
Hệ số của số hạng chứa x 7 trong khai triển nhị thức Newton x - 1 x 2 10 là
A. 10
B. C 10 2
C. C 10 7
D. -10
Tổng các hệ số nhị thức Niu – tơn trong khai triển ( 1 + x ) 3 n bằng 64. Số hạng không chứa x trong khai triển ( 2 n x + 1 2 n x 2 ) 3 n là
A. 360
B. 210
C. 250
D. 240
Tìm hệ số của số hạng chứa x 9 trong khai triển nhị thức Newton 1 + 2 x 3 + x 11 .
A. 4620.
B. 1380.
C. 9405.
D. 2890.
Hệ số của số hạng chứa x 6 trong khai triển nhị thức 3 x - x 3 12 (với x ≠ 0 ) là:
A. - 220 729
B. 220 729 x 6
C. - 220 729 x 6
D. 220 729