Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-1;-2;2), B(-3;-2;0) và mặt phẳng (P):x+3y-z+2=0. Vectơ chỉ phương của đường thẳng d là giao tuyến của mặt phẳng (P) và mặt phẳng trung trực của đoạn AB có tọa độ là
A. u → = 1 ; - 1 ; 0
B. u → = 2 ; 3 ; - 1
C. u → = 1 ; - 2 ; 0
D. u → = 3 ; - 2 ; - 3
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x - z + 1 = 0 Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0; - 1)
B. (3; - 1;1)
C. (3; - 1;0)
D. ( - 3;1;1)
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2 z - 1 = 0 và 2 x - z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2 y - 5 z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x − y + 2 z − 1 = 0 và 2 x − z + 3 = 0 . Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. − 3 y + 5 z = 0
B. 2 x − 5 y + 5 = 0
C. − 3 y + 5 z + 5 = 0
D. 2 y − 5 z + 5 = 0
Trong hệ trục tọa độ , cho mặt phẳng (P) có phương trình 3 x - z + 1 = 0 . Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0;-1)
B. (3;-1;1)
C. (3;-1;0)
D. (-3;1;1)
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) có phương trình y − z + 2 = 0 . Vectơ nào dưới đây là vectơ pháp tuyến của (P)?
A. n → = ( 1 ; − 1 ; 2 ) .
B. n → = ( 1 ; − 1 ; 0 ) .
C. n → = ( 0 ; 1 ; − 1 ) .
D. n → = ( 0 ; 1 ; 1 ) .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có vecto pháp tuyến là n → = (2; –1;1). Vectơ nào sau đây cũng là vectơ pháp tuyến của (P)?
A. (–2;1;1)
B. (–4;2;3)
C. (4;2; –2)
D. (4; –2;2)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng: 5 x − 2 y − 3 x + 7 = 0 . Tìm tọa độ vectơ pháp tuyến n → của mặt phẳng.
A. n → = − 5 ; 2 ; − 3 .
B. n → = − 5 ; − 2 ; − 3 .
C. n → = − 5 ; 2 ; 3 .
D. n → = 5 ; 2 ; 3 .
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình 3 x − 4 z + 7 = 0 . Một vectơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. − 3 ; 0 ; 4 .
B. 3 ; − 4 ; − 7 .
C. 3 ; 0 ; 7 .
D. 3 ; − 4 ; 7 .