Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Hà

Trong hệ tọa độ Oxy, cho parabol ( P ) : y=x2 và đường thẳng ( d ) : y = 2mx+2 (m là tham số ). Tìm m để ( d ) cắt ( P ) tại 2 điểm phân biệt A,B sao cho tam giác OAB có diện tích bằng \(2\sqrt{6}\)

Hoàng Thanh Tuấn
30 tháng 5 2017 lúc 21:45

Xét phương trình hoành độ giao điểm 

\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)

Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có

\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)

theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)

\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)

\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)

Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)

Nguyễn Phước Hưng
17 tháng 8 2017 lúc 17:12

Tam giac chưa vuông mà


Các câu hỏi tương tự
Phương Hà
Xem chi tiết
Phương Hà
Xem chi tiết
Lan Nguyễn Ngọc
Xem chi tiết
Hằng Nguyễn
Xem chi tiết
Hiển Bùi
Xem chi tiết
hoàng hà diệp
Xem chi tiết
Mai Nhật Lệ
Xem chi tiết
Hồng Trần
Xem chi tiết
Nam Nguyễn
Xem chi tiết