Trong không gian Oxyz, cho hai đường thẳng d : x - 1 2 = y - 7 1 = z - 3 4 và d ' : x - 6 3 = y + 1 - 2 = z + 2 1 . Trong các mệnh đề sau, mệnh đề nào đúng?
A. Song song.
B. Trùng nhau.
C. Cắt nhau.
D. Chéo nhau.
Trong không gian Δ, cho hai đường thẳng d : x - 1 2 = y - 7 1 = z - 3 4 v à d ' : x - 6 3 = y + 1 - 2 = z + 2 1 . Trong các mệnh đề sau, mệnh đề nào đúng?
A. Song song.
B. Trùng nhau.
C. Cắt nhau.
D. Chéo nhau.
Với xx là số thực bất kì, mệnh đề nào sau đây sai?
A.
(2021x)2=(2021)x2.
B.
22021x=2021x2.
C.
(2021x)2=(2021)2x
D.
√2021x=(√2021)x
Cho a,b,c là các số thực dương, a ≠ 1 . Xét các mệnh đề sau
( I ) 3 a = 2 ⇔ a = log 3 2
( II ) ∀ x ∈ R \ { 0 } , log 2 x 2 = 2 log 2 x
( III ) log a ( bc ) = log a b . log a c
Trong ba mệnh đề (I), (II), (III) số mệnh đề sai là
A. 2
B. 3
C. 1
D. 0
Trong không gian với hệ trục toạ độ Oxyz, cho hai đường thẳng d : x - 2 - 3 = y + 2 1 = z + 1 - 2 và d ' : x 6 = y - 4 - 2 = z - 2 4 . Mệnh đề nào sau đây đúng?
A. d ∥ d '
B. d ≡ d '
C. d và d’ cắt nhau
D. d và d’ chéo nhau
Cho các số thực a, b và các mệnh đề:
1 . ∫ a b f ( x ) d x = - ∫ a b f ( x ) d x
2 . ∫ a b 2 f ( x ) d x = 2 ∫ a b f x d x
3 . ∫ a b f 2 x d x = ∫ a b f x d x 2
4 . ∫ a b f x d x = ∫ a b f u d u
Số mệnh đề đúng trong 4 mệnh đề trên là:
A. 3.
B. 4
C. 2
D. 1
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Trong không gian với hệ tọa độ Oxyz , cho ba mặt phẳng (P)=x+y+2z+1=0 ; (Q): x=y-z+2=0, (R): x-y=5=0. Trong các mệnh đề sau, mệnh đề nào sai?
A. R ⊥ Q
B. P ⊥ Q
C. P ⊥ R
D. P / / R