Đáp án D
Các trường hợp A, B, C đều có khả năng a nằm trên mặt phẳng (P)
Đáp án D
Các trường hợp A, B, C đều có khả năng a nằm trên mặt phẳng (P)
Cho hai đường thẳng phân biệt a, b. Trong các điều kiện sau, điều kiện nào đủ để kết luận được hai đường thẳng a và b song song với nhau
A. a ⫽ P và b ⫽ P
B. a ⫽ c và b ⫽ c
C. a và b cùng chéo với đường thẳng c
D. P ⫽ b và a ⊂ P
Cho hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a. Phát biểu nào sau đây là đúng?
A. (P) và (Q) cắt nhau
B. (P) và (Q) song song với nhau
C. (P) và (Q) trùng nhau
D. (P) và (Q) cắt nhau hoặc song song với nhau.
Cho hai đường thẳng a, b cố định, song song với nhau và khoảng cách giữa chúng bằng 4. Hai mặt phẳng (P), (Q) thay đổi vuông góc với nhau lần lượt chứa hai đường thẳng a, b. Gọi d là giao tuyến của (P), (Q). Khẳng định nào sau đây là đúng?
A. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 4
B. d thuộc 1 mặt nón cố định
C. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2 2
D. d thuộc 1 mặt trụ cố định có khoảng cách giữa đường sinh và trục bằng 2
Cho hai đường thẳng phân biệt a và b cùng song song với mp (P). Có bao nhiêu vị trí tương đối của a và b?
A. 1
B. 2
C. 3
D. 4
Cho hình bình hành ABCD. Gọi Ax, By,Cz,Dt lần lượt là các đường thẳng song song với nhau đi qua A,B,C,D và nằm về cùng một phía của mp(ABCD), đồng thời không nằm trong mp(ABCD). Một mặt phẳng (P) lần lượt cắt Ax,By,Cz,Dt lần lượt tại A’,B’,C’,D’ biết AA’=x,BB’=y, CC’=z. Khi đó DD’ bằng:
A. x+y-z
B. x-y-z
C. x-y+z
D. x+y+z
Cho hai đường thẳng chéo nhau a và b lần lượt nằm trên hai mặt phẳng song song (P) và (Q). Hỏi nếu điểm M không nằm trên (P) và không nằm trên (Q) thì có bao nhiêu đường thẳng đi qua M cắt cả a và b.
A. 1
B. 2
C. 4
D. vô số
Trong các mệnh đề sau đây mệnh đề nào là đúng?
a) Đường thẳng Δ là đường vuông góc chung của hai đường thẳng a và b nếu Δ ⊥a và Δ ⊥b.
b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a và b chéo nhau thì đường vuông góc chung của a và b luôn luôn vuông góc với (P).
c) Gọi Δ là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì Δ là giao tuyến của hai mặt phẳng (a, Δ) và (b, Δ).
d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Đường vuông góc chung Δ của hai đường thẳng chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia.
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d. Trong (P) cho đường thẳng a, trong (Q) cho đường thẳng b. Giả sử a ∩ b = M , a ∩ d = N , b ∩ d = K . Phát biểu nào sau đây là đúng:
A. Ba điểm M, N, K thẳng hàng.
B. Ba điểm M, N, K trùng nhau.
C. Ba điểm M, N, K lập thành tam giác cân.
D. Ba điểm M, N, K lập thành tam giác vuông.
Cho hai đường thẳng a và b lần lượt nằm trên hai mặt phẳng song song (P) và (Q).
A. a và b là hai đường thẳng song song
B. nếu điểm M không nằm trên (P) và (Q) thì không thể coi đường thẳng nào đi qua M và cắt cả a lẫn b
C. nếu a và b không song song với nhau, điểm M không nằm trên (P) và (Q), thì luôn có duy nhất một đường thẳng đi qua M cắt cả a và b.
D. cả 3 câu trên đều sai.