Dãy số nào sau đây có giới hạn khác 0 ?
A. - 0 , 9 n
B. n - 3 n
C. 2 n - 1 3 n + 2 n
D. 1 - n n 2 - 1
Dãy số nào sau đây có giới hạn khác 0?
A. 1/n
B. 1 / n
C. (n+1)/n
D. ( sin n ) / n
Trong các dãy số cho dưới đây, dãy số nào không phải là một cấp số nhân lùi vô hạn?
A. 2 3 , 4 9 , 8 27 , . . . , 2 3 n , . . .
B. 1 3 , 1 9 , 1 27 , . . . , 1 3 n , . . .
C. 3 2 , 9 4 , 27 8 , . . . , 3 2 n , . . .
D. 1 , - 1 2 , 1 4 , - 1 8 , . . . , - 1 2 n - 1 , . . .
Dãy số nào sau đây có giới hạn bằng 1/5?
A. n 2 - 2 n 5 n + 5 n 2
B. 1 - 2 n 5 n + 5
C. 1 - 2 n 2 5 n + 5
D. 1 - 2 n 5 n + 5 n 2
Tính giới hạn của các dãy số có số hạng tổng quát sau đây, khi n → + ∞ c n = 2 n n n 2 + 2 n - 1
Dãy nào sau đây có giới hạn khác 0?
A. 3 n + 2 2 n
B. 1 2 n
C. cos 3 n 2 n
D. 1 n 2
Xét hàm số f x = 2 x 2 - 2 x x - 1
1. Cho biến x những giá trị khác 1 lập thành dãy số x n , x n → 1 như trong bảng sau:
Khi đó, các giá trị tương ứng của hàm số
f ( x 1 ) , f ( x 2 ) , … , f ( x n ) , …
cũng lập thành một dãy số mà ta kí hiệu là f ( x n ) .
a) Chứng minh rằng f ( x n ) = 2 x n = ( 2 n + 2 ) / n .
b) Tìm giới hạn của dãy số f ( x n ) .
2. Chứng minh rằng với dãy số bất kì x n , x n ≠ 1 và x n → 1 , ta luôn có f ( x n ) → 2 .
(Với tính chất thể hiện trong câu 2, ta nói hàm số f x = 2 x 2 - 2 x x - 1 có giới hạn là 2 khi x dần tới 1).
Dãy số nào sau đây có giới hạn là +∞?
A. u n = n 2 - 2 n 3
B. u n = n 2 - 5 n 3 - 1
C. u n = 2 n 2 - 2016 n
D. u n = 6 n 3 - n 4
Dãy số nào sau đây có giới hạn là +∞?
A. u n = 6 n 2 - 5 n 3
B. u n = n 2 - 4 n 3
C. u n = 7 n 2 - n
D. u n = 3 n 3 - n 4