Trên quãng đường AB, hai ô tô khởi hành cùng một thời điểm từ 2 bến A và B đi ngược chiều nhau. Hai xe gặp nhau sau 3 giờ. Biết rằng dau khi gặp nhau, mỗi xe tiếp tục đi hết quãng đường còn lại. Xe khởi hành từ A đến B muộn hơn xe khởi hành từ B đến A là 2 giờ 30 phút. Hỏi mỗi xe đi quãng đường AB hết mấy giờ?
gọi thời gian xe đi từ A đến B là x (giờ ) ( x > 3 )
thời gian xe di từ B đến A là x - 2,5 ( giờ )
Gọi quãng đường AB là y (Km ) ( y > 0)
vận tốc của xe đi từ A đến B là : \(\frac{y}{x}\)
vận tốc của xe đi từ B đến A là : \(\frac{y}{x-2,5}\)
Vì hai xe gặp nhau sau 3 giờ nên ta có phương trình
\(\frac{3y}{x}+\frac{3y}{x-2,5}=y\Leftrightarrow\frac{3}{x}+\frac{3}{x-2,5}=1\)( do y> 0 )
\(\Rightarrow3\left(x-2,5\right)+3x=x\left(x-2,5\right)\)
\(\Leftrightarrow x^2-8,5x+7,5=0\)
=> x1 = 1 ( loại ) ; x2 = 7,5 ( thỏa mãn )
vậy xe đi từ A đến B mất 7,5 giờ
xe đi từ B đến A là 5 giờ .