Gọi M là điểm biểu diễn của số phức z trong mặt phẳng tọa độ, N là điểm đối xứng của M qua Oy (M,N không thuộc các trục tọa độ). Số phức w có điểm biểu diễn lên mặt phẳng tọa độ là N. Mệnh đề nào sau đây đúng ?
A. w = -z.
B. w = - z -
C. w = z -
D. w > z
Cho số phức z. Gọi A, B lần lượt là các điểm trong mặt phẳng (Oxy) biểu diễn các số phức z và 1 + i z . Tính |z| biết diện tích tam giác OAB bằng 8.
A. |z| = 4
B. | z | = 4 2
C. |z| = 2
D. | z | = 2 2
Cho số phức z có môđun bằng 8. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w=2z+4-3i là đường tròn có tâmI(a;b), bán kính R. Tổng a+b+R bằng
A. 7.
B. 9
C. 15.
D. 17.
Cho các số phức z, w thỏa mãn |z+2-2i|=|z-4i|, w=iz+1. Giá trị nhỏ nhất của |w| là
A. 2 2
B. 2
C. 3 2 2
D. 2 2
Trong số các số phức z thỏa mãn điều kiện |z-4+3i|=3, gọi z 0 là số phức có mô đun lớn nhất. Khi đó | z 0 | là:
A. 3
B. 4
C. 5
D. 8
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 ; z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12 + 2 i
B. - 2 + 12 i
C. 6 - 4 i
D. 12 + 4 i
Cho hàm số y = - x 3 + 3 x 2 + m (m là tham số) có đồ thị (C). Gọi A, B là các điểm cực trị của đồ thị (C). Khi đó, số giá trị của tham số m để diện tích tam giác OAB (O là gốc tọa độ) bằng 1 là:
A. 0
B. 2
C. 1
D. 3
Phần thực; phần ảo của số phức z = - 3 + 4 i theo thứ tự bằng
A. - 3 ; 4
B. - 3 ; - 4
C. 4 ; - 3
D. - 4 ; - 3
Cho z là số phức thỏa mãn z+ 1 z =1. Tính giá trị của z 2017 + 1 z 2017
A. -2
B. -1
C. 1
D. 2