Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán
A. 2 7
B. 10 21
C. 37 42
D. 3 4
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán bằng:
A. 37 42
B. 2 7
C. 5 42
D. 1 21
Trên giá sách có 4 quyển sách toán, 5 quyển sách lý, 6 quyển sách hóa. Lấy ngẫu nhiên 3quyển sách. Tính xác suất để 3 quyển sách được lấy ra có ít nhất một quyển sách là toán.
A. 33 91
B. 24 455
C. 58 91
D. 24 91
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán.
A. 2 7
B. 3 4
C. 37 42
D. 10 21
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển lấy ra có ít nhất 1 quyển là môn toán.
A. 5 42
B. 2 7
C. 1 21 .
D. 37 42 .
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau
A. 5 42 .
B. 37 42 .
C. 2 7 .
D. 1 21 .
Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lí và 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất sao cho ba quyển lấy ra có ít nhất một quyển sách Toán.
A. 37 42
B. 5 42
C. 10 21
D. 42 37
Trên một giá sách có 9 quyển sách Văn, 6 quyển sách Anh. Lấy lần lượt 3 quyển và không để lại vào giá. Xác suất để lấy được 2 quyển đầu là Văn và quyển thứ 3 sách Anh là
A. 72/455
B. 73/455
C. 74/455
D. 71/455
Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn được xếp cạnh nhau.
A. 1 210
B. 1 600
C. 1 300
D. 1 450