Chọn đáp án A
Phương pháp
Chu vi đường tròn đáy của hình nón chính là độ dài cung tròn của phần hình học được trải ra có bán kính 3cm.
Cách giải
Chu vi đường tròn đáy hình nón là:
Chọn đáp án A
Phương pháp
Chu vi đường tròn đáy của hình nón chính là độ dài cung tròn của phần hình học được trải ra có bán kính 3cm.
Cách giải
Chu vi đường tròn đáy hình nón là:
Một cái th ng đựng nước được tạo thành từ việc cắt mặt xung quanh của một hình nón bởi một mặt phẳng vuông góc với trục của hình nón. Miệng thùng là đường tròn có bán kính bằng hai lần bán kính mặt đáy của th ng. Bên trong thùng có một cái phễu dạng hình nón có đáy là đáy của th ng, có đ nh là tâm của miệng thùng và có chiều cao bằng 20cm (xem hình minh họa). Biết rằng đổ 4.000 c m 3 nước vào th ng thì đầy th ng (nước không chảy được vào bên trong phễu), tính bán kính đáy r của phễu (giá trị gần đúng của r làm tròn đến hàng phần trăm).
A. r = 9,77 cm
B. r = 7,98 cm
C. r = 5,64 cm
D. r = 5,22 cm
Từ miếng bìa hình tròn kính R = 4 người ta cắt một hình quạt có bán kính với hình tròn và góc α = 270 ° . Sau đó xếp hình quạt thành mặt xung quanh của hình nón. Tính thể tích cùa khối nón.
A. 4 π
B. 3 π 7
C. 9 π 7
D. 64 π 3
Để định vị một trụ điện, người ta cần đúc một khối bê tông có chiều cao h = 1 , 5 m gồm:
- Phần dưới có dạng hình trụ bán kính đáy R = 1 m và có chiều cao bằng 1 3 h ;
- Phần trên có dạng hình nón bán kính đáy bằng R đã bị cắt bỏ bớt một phần hình nón có bán kính đáy bằng 1 2 R ở phía trên (người ta thường gọi hình đó là hình nón cụt);
- Phần ở giữa rỗng có dạng hình trụ bán kính đáy bằng 1 4 R (tham khảo hình vẽ bên dưới).
Thể tích của khối bê tông (làm tròn đến chữ số thập phân thứ ba) bằng
A. 2 , 815 m 3
B. 2 , 814 m 3
C. 3 , 403 m 3
D. 3 , 109 m 3
Một hình nón có chiều cao S O = 50 c m và có bán kính đáy bằng 10 c m . Lấy điểm M thuộc đoạn SO sao cho O M = 20 c m . Một mặt phẳng qua M vuông góc với SO cắt hình nón theo giao tuyến là đường tròn C . Tính diện tích xung quanh của hình nón đỉnh S có đáy là hình tròn xác định bởi C (xem hình vẽ).
A. 16 π 26 c m 2
B. 26 π 26 c m 2
C. 36 π 26 c m 2
D. 46 π 26 c m 2
Cho hình nón tròn xoay đỉnh S, đáy là một hìnht tròn tâm O bán kính R, chiều cao của hình nón bằng 2R. Gọi I là một điểm nằm trên mặt phẳng đáy sao cho IO=2R. Giả sử A là điểm trên đường tròn (O) sao cho O A ⊥ O I . Diện tích xung quanh của hình nón bằng:
A. π R 2 2
B. π R 2 3
C. π R 2 2 5
D. π R 2 5
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 . Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 1 3
B. 3
C. 1 3
D. 3
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 . Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 3
B. 1 3
C. 1 3
D. 3
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 . Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 1 3
B. 3
C. 1 3
D. 3
Một hình trụ có bán kính đáy bằng r và khoảng cách giữa hai đáy bằng r 3 Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.
A. 3
B. 1 3
C. 1 3
D. 3