Cho hàm số y = x − 1 x − 3 . Xét các mệnh đề sau:
(1) Hàm số nghịch biến trên D=R\{3}.
(2) Đồ thị hàm số có một tiệm cận đứng là x=1, tiệm cận ngang là y=3.
(3) Hàm số đã cho không có cực trị.
(4) Đồ thị hàm số nhận giao điểm I(3;1) của hai đường tiệm cận làm tâm đối xứng.
Chọn các mệnh đề đúng ?
A. 1,2,3.
B. 3,4.
C. 2,3,4.
D. 1,4.
Tọa độ điểm M thuộc đồ thị (C) của hàm số y = x + 2 x - 2 cách đều hai đường tiệm cận của (C) là
A.
B.
C.
D.
Gọi I là giao điểm hai đường tiệm cận của đồ thị hàm số y = 2 - x x - 1 . Tìm tọa độ của I
A. I 1 ; - 1
B. I - 1 ; - 1
C. I - 1 ; 1
D. I 1 ; 1
Tìm khẳng định đúng trong các khẳng định sau đây:
A. Hàm số y = x 3 - 5 có hai cực trị;
B. Hàm số y = x 4 /4 + 3 x 2 - 5 luôn đồng biến;
C. Tiệm cận ngang của đồ thị hàm số y = 3 x - 2 5 - x là y = -3;
D. Đồ thị hàm số sau có hai tiệm cận đứng
y
=
3
x
2
-
2
x
+
5
x
2
+
x
+
7
Biết rằng đồ thị hàm số y = a x + 1 b x - 2 có đường tiệm cận đứng là x = 2 và đường tiệm cận ngang là y = 3. Tính giá trị của a + b?
A. 1.
B. 5.
C. 4.
D. 0.
Biết rằng đồ thị hàm số y = ( m - 2 n - 3 ) x + 5 x - m - n nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng S = m 2 + n 2 - 2 .
A. S = 2
B. S = 0
C. S = -1
D. S = 1
Cho hàm số y = x - 1 x + 2 có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận của (C) . Xét tam giác đều ABI có hai đỉnh A; B thuộc (C) , đoạn thẳng AB có độ dài bằng
A. 6 .
B. 2 3 .
C. 2.
D. 2 2 .
Tọa độ giao điểm của đồ thị các hàm số:
và y = x + 1 là:
A. (2; 2); B. (2; -3);
C(-1; 0); D. (3; 1).
Cho hàm số y = x + 1 x - 2 (C). Gọi d là khoảng cách từ giao điểm của hai đường tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất mà d có thể đạt được là:
A.
B. .
C. .
D. .