Cách tui lẹ hơn cách bạn Nguyễn Duy Khánh nè!
Ta có: \(C=\frac{7^{28}+7^{24}+....+7^4+7^0}{\left(7^{30}+7^{26}+...+7^6+7^2\right)+\left(7^{28}+7^{24}+...+7^4+7^0\right)}\)
\(=\frac{7^{28}+7^{24}+...+7^4+7^0}{7^2\left(7^{28}+7^{24}+...+7^4+7^0\right)+\left(7^{28}+7^{24}+...+7^4+7^0\right)}\)
\(=\frac{7^{28}+7^{24}+...+7^4+7^0}{\left(7^{28}+7^{24}+...+7^4+7^0\right)\left(7^2+1\right)}=\frac{1}{7^2+1}=\frac{1}{50}\)
P/s: Easy đúng không?
\(C=\frac{7^{28}+7^{2\text{4}}+...+7^{\text{4}}+7^0}{7^{30}+7^{28}+...+7^2+7^0}\)
Đặt A là tử số ,B là mẫu số.Ta có:
\(7^{\text{4}}A=7^{32}+7^{28}+...+7^8+7^{\text{4}}+7^0\)
\(20\text{4}1A-A=\left(7^{32}+7^{28}+7^{2\text{4}}+...+7^8+7^{\text{4}}\right)-\left(7^{28}+7^{2\text{4}}+...+7^{\text{4}}+7^0\right)\)
\(2\text{4}00A=7^{32}-7^0=7^{32}-1\)
\(\Rightarrow A=\left(7^{32}-1\right):2\text{4}00\)
\(7^2B=\left(7^{32}+7^{30}+7^{28}+...+7^{\text{4}}+7^2\right)\)
49B-B= ....tự..điền......như A nhé.....
48B=732-1 =>B=[7232-1]:48
=>\(C=\frac{A}{B}=\frac{\left(7^{32}-1\right):2\text{4}00}{\left(7^{32}-1\right):\text{4}8}\)
Tui nghĩ vậy đc r á
p/s:ko chắc
.
Đặt: \(A=7^{28}+7^{24}+...+7^4+7^0\)
=> \(7^4.A=7^{32}+7^{28}+...+7^8+7^4\)
=> \(7^4.A-A=\left(7^{32}+7^{28}+...+7^8+7^4\right)-\left(7^{28}+7^{24}+...+7^4+7^0\right)\)
=> \(\left(7^4-1\right).A=7^{32}-1\)
=> \(A=\frac{7^{32}-1}{7^4-1}\)
Đặt: \(B=7^{30}+7^{28}+...+7^2+7^0\)
tương tự tính được: \(B=\frac{7^{32}-1}{7^2-1}\)
\(C=\frac{A}{B}=\frac{7^{32}-1}{7^4-1}:\frac{7^{32}-1}{7^2-1}=\frac{7^2-1}{7^4-1}\)
\(=\frac{7^2-1}{\left(7^2-1\right)\left(7^2+1\right)}=\frac{1}{7^2+1}=\frac{1}{50}\)