\(A=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{3^4\left(3-1\right)}{3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\cdot9}\)
\(=\dfrac{1}{3\cdot2}-\dfrac{1}{5}\cdot\dfrac{-6}{9}=\dfrac{1}{6}+\dfrac{6}{45}=\dfrac{45+36}{270}=\dfrac{81}{270}=\dfrac{3}{10}\)