a) \(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4.3}-\sqrt{9.3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}=0\)
b) \(\left(\sqrt{12}-2\sqrt{75}\right)\sqrt{3}=\sqrt{36}-2\sqrt{225}=6-30=-24\)
c) \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{36.7}-\sqrt{100.7}+\sqrt{144.7}-\sqrt{64.7}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
d) \(3\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)=3\left(\sqrt{4.3}+\sqrt{9.3}-\sqrt{3}\right)\)
\(=3\left(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\right)=3.4\sqrt{3}=12\sqrt{3}\)
e, \(\sqrt{12}-\sqrt{27}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}=0\)
b, \(\left(\sqrt{12}-2\sqrt{75}\right)\sqrt{2}=\left(2\sqrt{3}-2.5\sqrt{3}\right)\sqrt{2}\)
\(=4\sqrt{3}-10\sqrt{6}\)
tương tự
Lời giải:
a.
$\sqrt{12}-\sqrt{27}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}=(2-3+1)\sqrt{3}=0.\sqrt{3}=0$
b.
$(\sqrt{12}-2\sqrt{75})\sqrt{3}=(2\sqrt{3}-10\sqrt{3}).\sqrt{3}$
$=-8\sqrt{3}.\sqrt{3}=-8.3=-24$
c.
$\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}$
$=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}$
$=\sqrt{7}(6-10+12-8)=0\sqrt{7}=0$
d.
$3(\sqrt{12}+\sqrt{27}-\sqrt{3})=3(2\sqrt{3}+3\sqrt{3}-\sqrt{3})$
$=3.4\sqrt{3}=12\sqrt{3}$
a) \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
=0
b) \(\left(\sqrt{12}-2\sqrt{75}\right)\cdot\sqrt{3}\)
\(=\left(2\sqrt{3}-10\sqrt{3}\right)\cdot\sqrt{3}\)
=-24
c) \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
\(=0\)
