\(B=x^{17}-12.x^{16}+12.x^{15}-12.x^{14}+...-12.x^2+12x-1\)
\(=11^{17}-\left(11+1\right)11^{16}+\left(11+1\right)11^{15}-\left(11+1\right)11^{14}+...-\left(11+1\right)11^2+\left(11+1\right)11-1\)
\(=11^{17}-11^{17}-11^{16}+11^{16}+11^{15}-11^{15}-11^{14}+...-11^3-11^2+11^2+11-1\)
\(=11-1=10\)
Vậy B = 10
B= x^17 - 12x^16 +12x^15 - 12x^14 +...-12x^2+12x-1
= x^17-11x^16-x^16+11x^15 +x^15-11x^14-x^14+...-x^2+11x+x-1
= (x-11)( x^16-x^15+x^14-...-x +1)
= 0 ( vì x=11)
B=x17−12.x16+12.x15−12.x14+...−12.x2+12x−1
=1117−(11+1)1116+(11+1)1115−(11+1)1114+...−(11+1)112+(11+1)11−1
=\(11^{17}-11^{17}-11^{16}+11^{15}\)+...−11^3−11^2+11^2+11−1
=11−1=10
Vậy B = 10