`2/[3.5]+2/[5.7]+2/[7.9]+....+2/[19.21]`
`=1/3-1/5+1/5-1/7+1/7-1/9+....+1/19-1/21`
`=1/3-1/21`
`=6/21`
`2/[3.5]+2/[5.7]+2/[7.9]+....+2/[19.21]`
`=1/3-1/5+1/5-1/7+1/7-1/9+....+1/19-1/21`
`=1/3-1/21`
`=6/21`
\(1-\dfrac{2}{3x5}-\dfrac{2}{5x7}-\dfrac{2}{7x9}-...-\dfrac{2}{19x21}\)
Câu 5: (1 điểm): Tính tổng sau:
Q = (1-\(\dfrac{1}{2^2}\)) · (1-\(\dfrac{1}{3^2}\)) · (1-\(\dfrac{1}{4^2}\)) · … · (1-\(\dfrac{1}{100^2}\))
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Tính biểu thức sau :
\(\left(7-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(5-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
Tính một cách hợp lí :
\(065.78+2\dfrac{1}{5}.2020+0,35.78-2,2.2020\)
Tính nhanh:
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\)\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\)
giúp mình với
Tính
\(C=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+..+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
Tính A = \(\dfrac{1}{2}\) +\(\dfrac{2}{2^2}\) +\(\dfrac{3}{2^3}\) +\(\dfrac{4}{2^4}\) +...+\(\dfrac{10}{2^{10}}\)
Tính: a) A=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+...+\(\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{2023.2024}\)
cứu tôi mng owiiii :((