Sửa đề: \(S=1+\frac{1}{2^2}+\frac{1}{2^4}+\cdots+\frac{1}{2^{98}}+\frac{1}{2^{100}}\)
Ta có: \(S=1+\frac{1}{2^2}+\frac{1}{2^4}+\cdots+\frac{1}{2^{98}}+\frac{1}{2^{100}}\)
=>\(4S=4+1+\frac{1}{2^2}+\cdots+\frac{1}{2^{96}}+\frac{1}{2^{98}}\)
=>\(4S-S=4+1+\frac{1}{2^2}+\cdots+\frac{1}{2^{98}}-1-\frac{1}{2^2}-\cdots-\frac{1}{2^{100}}\)
=>\(3S=4-\frac{1}{2^{100}}=\frac{2^{102}-1}{2^{100}}\)
=>\(S=\frac{2^{102}-1}{3\cdot2^{100}}\)