Ta có: A = 51000 + 5999 + 5998 + ... + 5
\(\Rightarrow\) 5A = 51001 + 51000 + 5999 + ... + 52
\(\Rightarrow\)5A - A = (51001 + 51000 + 5999 +... + 52) - ( 51000 + 5999 + 5998 + ... + 5 )
\(\Rightarrow\)4A = 51001 - 5
\(\Rightarrow\)A = \(\frac{5^{1001}-5}{4}\)
Đặt \(C=5+5^2+5^3+...+5^{998}+5^{999}+5^{1000}\)
\(\Rightarrow5C=5^2+5^3+5^4+....+5^{999}+5^{1000}+5^{1001}\)
\(\Rightarrow5C-C=\left(5^2+5^3+...+5^{1000}+5^{1001}\right)-\left(5+5^2+...+5^{999}+5^{1000}\right)\)
\(\Rightarrow4C=5^{1001}-5\)
=> C = (51001 - 5) / 4