Đặt t = lnx ⇒ dt = (1/x)dx . Khi x = 1 thì t = 0, khi x = 2e thì t = 1+ln2. Ta có:
Vậy chọn đáp án D
Đặt t = lnx ⇒ dt = (1/x)dx . Khi x = 1 thì t = 0, khi x = 2e thì t = 1+ln2. Ta có:
Vậy chọn đáp án D
Tính các tích phân sau: 1) 2 ln e e x dx ; 2) 1 3 2 0 4 x dx x ; 3) /2 /4 1 tan dx x ; 4) 1 0 x e dx ; 5) 2 1 x xe dx ; 6) 0 1 3 4 dx x ; 7) 2 1 4 4 5 dx x x ; 8) 2 0 ln 1 x dx x (HD: 1 u x ) ĐS: 1) 2 e ; 2) 16 7 5 3 ; 3) ln 2 ; 4) 2
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Cho hàm số f ( x ) = ln ( 1 - 4 ( 2 x - 1 ) 2 ) . Biết rằng f ( 2 ) + f ( 3 ) + . . . + f ( 2020 ) = ln a b , trong đó a b là phân số tối giản, a , b ∈ N * . Tính b -3a
A. -2
B. 3
C. -1
D. 1
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Biết I = ∫ 1 3 3 + ln x ( x + 1 ) 2 d x = a ( 1 + ln 3 ) - b ln 2 . Khi đó a 2 + b 2 bằng:
A. a 2 + b 2 = 7 16
B. a 2 + b 2 = 16 9
C. a 2 + b 2 = 25 16
D. a 2 + b 2 = 3 4
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số f ( x ) = ln 1 - 4 ( 2 x - 1 ) 2 . Biết rằng ,f(2) + f(3) + ....+f(2020) = ln a b trong đó a b , là phân số tối giản, a, b ∈ ℕ * . Tính b - 3a
A. -2
B. 3
C. -1
D. 1
Giả sử F(x) là một nguyên hàm của f ( x ) = ln ( x + 3 ) x 2 sao cho F(-2)+F(1)=0. Giá trị của F(-1)+F(2) bằng
B. 0
Cho hàm số f(x) liên tục trên ℝ thỏa mãn ∫ 0 99 f ( x ) d x = 2 . Khi đó tích phân I = ∫ 0 e 99 - 1 x x 2 + 1 f ( ln ( x 2 + 1 ) ) d x bằng bao nhiêu?
A. 1.
B. 2.
C. 3.
D. 4.
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i