Thực hiện phép chia \(a\left(x\right)=x^3+2x^2+3x-1\) cho \(b\left(x\right)=x-2\), ta được:
\(a\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+r\)
\(\Rightarrow a\left(2\right)=\left(2-2\right)\cdot Q\left(2\right)+r=r\)
\(\Rightarrow r=2^3+2\cdot2^2+3\cdot2-1=21\)
Vậy số dư phép chia \(a\left(x\right)\) cho \(b\left(x\right)\) là \(21\).