tính P= a3 +b3- 3(a+b)+2018. Biết
a=\(\sqrt[3]{5+2\sqrt{6}}+\sqrt[3]{5-2\sqrt{6}}\)
\(b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
a : \(\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{17+12\sqrt{2}}\)
b : \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
c : \(\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{19+6\sqrt{2}}\)
Tính giá trị của biểu thức
a. \(A=\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
b. \(B=\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
c. \(C=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
d. \(D=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
Tính giá trị của biểu thức:
a)A=\(\sqrt{\left(2-\sqrt{5}\right)^2}\) +\(\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
b)B=\(\sqrt{6+2\sqrt{5}}\) - \(\sqrt{6-2\sqrt{5}}\)
c)C=\(\sqrt{17+12\sqrt{2}}\) + \(\sqrt{17-12\sqrt{2}}\)
thực hiện phép tính ( rút gọn biểu thức )
a) \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{3\sqrt{6}}{\sqrt{2}}+\dfrac{3+\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
b) \(\left(\dfrac{2-2\sqrt{5}}{\sqrt{5}-2}-\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
CM A thuoc Z va B thuoc Z voi :
A = \(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
B = \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
a)\(\left(\sqrt{5}+2\right).\left(17-4\sqrt{9+4\sqrt{5}}\right)?\)
b)\(\left(\sqrt{3-1}\right).\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
c) \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}\)
d) \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
Rút gọn biểu thức:
a. \(\sqrt{9-4\sqrt{5}-\sqrt{5}}\)
b.\(\left(\sqrt{2}-3\right)\sqrt{11+6\sqrt{2}}\)
c.\(\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)
Phương pháp 5. Biến đổi về dạng tổng các bình phương \(A^2+B^2+C^2=0\)
a \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
b \(x+y+z+35=2\left(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\right)\)
c \(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
d \(\sqrt{x}+2\sqrt{x+3}=x+4\)
e\(\sqrt{3-x}+2\sqrt{3x-2}-3=x\)