Đề bài của bạn có chút sai sót, cho sửa lại tí nha !
Bg
Ta có: \(D=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+...+\frac{1}{99.100}\)
=> \(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(D=1-\frac{1}{100}\)
=> \(D=\frac{99}{100}\)
Vậy \(D=\frac{99}{100}\)
\(D=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)