\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\)
\(=\left(1+\dfrac{1}{5}\right)+\left(\dfrac{3}{5\cdot7}+...+\dfrac{3}{97\cdot99}+\dfrac{3}{99\cdot101}\right)\)
\(=\dfrac{6}{5}+\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{2}{3}\cdot\dfrac{96}{505}\)
\(=\dfrac{6}{5}+\dfrac{64}{505}\)
\(=\dfrac{134}{101}\)
\(\#PeaGea\)