Đặt A = 1 + 2 + 22 + 23 + 24 + ... + 299 + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 + 2100 )
= 2 + 22 + 23 + 24 + ... + 2100 + 2101
=> A = 2A - A
= 2 + 22 + 23 + 24 + ... + 2100 + 2101 - ( 1 + 2 + 22 + 23 + 24 + ... + 299 + 2100 )
= 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 - 2 - 22 - 23 - 24 - ... - 299 - 2100
= 2101 - 1
Đătj S= 1+2+22+23+24+.......+299+2100
\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow2S-S=(2+2^2+2^3+...+2^{101})-\)\((1+2+2^2+...+2^{100})\)
\(\Rightarrow S=2^{101}-1\)
Đặt A = 1 + 2 + 22 + ... + 299 + 2100
=> 2A = 2 + 22 + 23 + ... + 2100 + 2101
Khi đó 2A - A = (2 + 22 + 23 + ... + 2100 + 2101) - (1 + 2 + 22 + ... + 299 + 2100)
A = 2101 - 1
Vậy A = 2101 - 1
\(1+2+2^2+2^3+2^4+.....+2^{99}+2^{100}\)
\(=1+2^1+2^2+2^2.2+2^4+2^4.2+....+2^{99}+2^{99}.2\)
\(=\left(1+2^1+2^2.2+2^4.2+....+2^{98}.2+2^{100}\right).\left(2.49\right)\)
\(=1+2^1+2^2+2^4+.....+2^{98}+2^{100}.98.\left(2.49\right)\)
\(=1.2^{51}.98^2\)
\(=2^{108}.34\)
Đặt \(D=1+2+2^2+...+2^{100}\)
=> \(2D=2+2^2+2^3+...+2^{101}\)
=> \(2D-D=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
=> \(D=2^{101}-1\)
Vậy \(D=2^{101}-1\)