Áp dụng bất đẳng thức Cauchy-Swartz, ta có : \(P^2=\left(1.\sqrt{x-3}+1.\sqrt{y-4}\right)^2\le\left(1^2+1^2\right)\left(x-3+y-4\right)=2\left(x+y-7\right)\)
\(\Rightarrow P^2\le2\) (vì x+y=8)
\(\Rightarrow P\le\sqrt{2}\) . Dấu đẳng thức xảy ra <=> \(\begin{cases}x\ge3;y\ge4\\x+y=8\\\sqrt{x-3}=\sqrt{y-4}\end{cases}\Leftrightarrow\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}\)
Vậy Max P = \(\sqrt{2}\Leftrightarrow\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}\)