\(A=\frac{3-4x}{x^2+1}=\frac{4x^2+4-4x^2-4x-1}{x^2+1}=4+\frac{-\left(4x^2+4x+1\right)}{x^2+1}=4+\frac{-\left(2x+1\right)^2}{x^2+1}\le4\)
Vậy \(A_{max}=4.\)
\(A=\frac{3-4x}{x^2+1}\)
\(\Rightarrow\frac{4x^4+4-4x^2-4x-1}{x^2+1}=A\)
\(\Rightarrow A\le4-\frac{\left(2x+1\right)^2}{x^2+1}\)
\(\Rightarrow A\le4\)