Có: \(P=\dfrac{x^4}{4}-x^2+y^2\)
Thay x = 4; y = 1/2 vào P. ta được:
\(P=\dfrac{4^4}{4}-4^2+\left(\dfrac{1}{2}\right)^2\)
\(=4^3-4^2+\dfrac{1}{4}\)
\(=48+\dfrac{1}{4}=\dfrac{193}{4}\)
Vậy P =\(\dfrac{193}{4}\)tại x = 4; y = 1/2
Có: \(P=\dfrac{x^4}{4}-x^2+y^2\)
Thay x = 4; y = 1/2 vào P. ta được:
\(P=\dfrac{4^4}{4}-4^2+\left(\dfrac{1}{2}\right)^2\)
\(=4^3-4^2+\dfrac{1}{4}\)
\(=48+\dfrac{1}{4}=\dfrac{193}{4}\)
Vậy P =\(\dfrac{193}{4}\)tại x = 4; y = 1/2
rút gọn và tính giá trị biểu thức sau tại x=-1,76và y=3/25
P=\([\)(\(\dfrac{x-y}{2y-x}\)-\(\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\dfrac{4\text{x}^4+4\text{x}^2y+y^2-4}{x^2+y+xy+x}\)\(]\):\(\dfrac{x+1}{2\text{x}^2+y+2}\)
Thịnh giải hộ
rút gọn rồi tính giá trị biểu thức
\(\dfrac{3x^2-12x+12}{x^2-4}\) tại x=\(-\dfrac{1}{4}\)
\(\dfrac{x^2-5x-6}{x^2-9}\) tại x=-1
\(\dfrac{x^2-9y^2}{x^2-6xy+9y^2}\) tại x=1, y=-\(\dfrac{2}{3}\)
rút gọn rồi tính giá trị biểu thức
\(\dfrac{3x^2-12x+12}{x^2-4}\) tại x= -\(\dfrac{1}{4}\)
\(\dfrac{x^2-5x+6}{x^2-9}\) tại x= -1
\(\dfrac{x^2-9y^2}{x^2-6xy+9y^2}\) tại x=1, y =-\(\dfrac{2}{3}\)
Tính giá trị biểu thức sau:
a) A= (5x-7)(2x+3)-(7x+2)(x-4) tại x=\(\dfrac{1}{2}\)
b) B= (x-2y)(y-2x)+(x+2y)(y+2x) tại x = 2; y = - 2 .
BT6: Tính giá trị của biểu thức
\(3,C=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-1\)
\(4,D=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-100\)
tính nhanh giá trị biểu thức tại x=1
\(\dfrac{1}{x-4}\).\(\dfrac{x+4}{x+1}\)-\(\dfrac{x+4}{x+1}\).\(\dfrac{8}{x^2-16}\)
Tính nhanh giá trị biểu thức tại x = 1
\(\dfrac{1}{x-4}\).\(\dfrac{x-4}{x+1}\) - \(\dfrac{x+4}{x+1}\).\(\dfrac{8}{x^2-16}\)
Cho 2 biểu thức:
A= \(\dfrac{x+2}{x+5}\)+ \(\dfrac{-5x-1}{x^2+6x+5}\)- \(\dfrac{1}{1+x}\) và B= \(\dfrac{-10}{x-4}\) với x ≠-5, x ≠-1, x≠ 4
a) Tính giá trị của biểu thức B tại x= 2
b) Rút gọn biểu thức A
c) Tìm giá trị nguyên của x để P= A.B đạt giá trị nguyên
Cho biểu thức N = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
a. Rút gọn N
b. TÍnh giá trị của N biết xy = 1; x + y = 0