Với a, b như đề cho thì
\(a^2-12ab^2+9b^4=2-12\sqrt{2}+9=11-12\sqrt{2}
Với a, b như đề cho thì
\(a^2-12ab^2+9b^4=2-12\sqrt{2}+9=11-12\sqrt{2}
Tính giá trị biểu thức: A=\(\sqrt{a^2+4ab^2+4b^2}-\sqrt{4a^2-12ab^2+9b^2}\) với \(a=\sqrt{2};b=1\)
GIÚP MÌNH VỚI M.N!!~~~~
cho biểu thức A = \(\dfrac{x-2}{\sqrt{x}+2}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{1-\sqrt{x}}-\dfrac{4}{x-1}\) với x ≥ 0 và x ≠ 1
a, tính giá trị của A khi x = 9
b, rút gọn biểu thức B
c, Đặt P = AB. Tìm các giả trị nguyên của x để P = \(\dfrac{7}{4}\)
Rút gọn rồi tính giá trị của các biểu thức sau:
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) tại x = \(-\sqrt{2}\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) tại a =2, b =\(-\sqrt{3}\)
Cho biểu thức A=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\left(x-1\right)\)(\(x\ge0;x\ne1\))
a) Tính giá trị biểu thức A khi x=4
b) Rút gọn biểu thức A và tìm giá trị lớn nhất của A
Cho hai biểu thức A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)và B= \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
a) Tính giá trị của A khi x= 4-\(2\sqrt{3}\)
b) Tìm x để A>0
c) Rút gọn B
d) Tìm giá trị nguyên của x để giá trị của biểu thức A: B nguyên
Bài 1 :Cho hai biểu thức\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và\(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}\) với x≥ 0; x≠1
a. Tính giá trị của biểu thức A khi x = 4
b. Chứng minh\(\dfrac{2}{\sqrt{x}+1}\)
Bài 2:
Cho biểu thức:\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn P
Cho biết biểu thức A = \(\dfrac{4}{2\sqrt{x}-x}\) B = \(\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\) với x > 0,x ≠ 4
a,Tính giá trị biểu thức A khi x = 2
b,Chứng minh rằng P = B : A = 1 - \(\sqrt{x}\)
cho biểu thức A=(3\sqrt(x)+1)/(\sqrt(x)+2) và B=((2)/(\sqrt(x)+2)-(\sqrt(x)-5)/(x-4))-:(\sqrt(x)+1)/(\sqrt(x)-2) (x>=0; x khác 4)
a) tính giá trị biểu thức a khi x =64
b) rút gọn B
c) cho P=A-B tìm x để P có giá trị là số tự nhiên
cho a,b,c các số thực thỏa mãn 1<=a,b,c<=2
tìm gtnn của biểu thức
A = \(\sqrt{4a^2-12ab+9b^2}+2\sqrt{b^2-2bc+c^2}+\sqrt{4c-12ac+9a^2}\)