Cho các số thực x,y,z thỏa mãn: x+2y+3z=0 và 2xy+6yz+3zx=0. Tính giá trị của biểu thức:
S=\(\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Giúp mik vs gấp quá !
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}.\)Hãy tính giá trị của biểu thức sau:
\(B=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+..........+f\left(\frac{2018}{2020}\right)+f\left(\frac{2019}{2020}\right).\)
Cho a,b,c thỏa mãn:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
Tính giá trị của biểu thức:
\(M=\left(a-b+1\right)^{2018}+\left(b-c+1\right)^{2019}+\left(c-a+1\right)^{2020}\)
Ta có: \(f\left(2019\right)=2020=2019+1\)
\(f\left(2020\right)=2021=2020+1\)
Đặt \(h\left(x\right)=-x-1\)và \(g\left(x\right)=f\left(x\right)+h\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}g\left(2019\right)=f\left(2019\right)+h\left(2019\right)=2020-2020=0\\g\left(2020\right)=f\left(2020\right)+h\left(2020\right)=2021-2021=0\end{cases}}\)
\(\Rightarrow x=2019;x=2020\)là nghiệm của đa thức g(x) mà g(x) là đa thức bậc 3 , hệ số \(x^3\)là số nguyên
\(\Rightarrow g\left(x\right)=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)\)(\(a\in\)Z*)
\(\Rightarrow f\left(x\right)=g\left(x\right)-h\left(x\right)\)
\(=a\left(x-2019\right)\left(x-2020\right)\left(x-x_0\right)+x+1\)
\(f\left(2021\right)=a\left(2021-2019\right)\left(2021-2020\right)\left(2021-x_0\right)+2021+1\)
\(=a.1.2\left(2021-x_0\right)+2022\)
\(f\left(2018\right)=a\left(2018-2019\right)\left(2018-2020\right)\left(2018-x_0\right)+2018+1\)
\(=a.1.2.\left(2018-x_0\right)+2019\)
\(\Rightarrow f\left(2021\right)-f\left(2018\right)=a.1.2\left(2021-2018\right)+3\)
\(=6a+3\)
Làm nốt
Cho các số x, y thoả mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Chứng minh rằng \(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=-1\)
1. Giải phương trình nghiệm nguyên
a) \(x^2+4x+2018^{10}\)
b) \(x^2+4x+\left(y-1\right)^2=21\)
c) \(x^2+3\left(y-1\right)^2=2021\)
d) \(\left(3x-1\right)^{2020}-18\left(y-2\right)^{2019}=2019^{2020}\)
2. Tìm x,y ∈ Z
a) \(x^2-y^2+6y=56\)
b) \(x^2-4x+9y^2-6y=11\)
Cho các số x,y thỏa mãn điều kiện:
\(x^2-2xy+6y^2-12x+2y+41=0\)
Tính giá trị của biểu thức: A=\(\dfrac{2020-2019\left(9-x-y\right)^{2019}-\left(x-6y\right)^{2010}}{y^{2010}}\)
Bài 1
Cho \(\left\{{}\begin{matrix}a+b+c=0\\ab+ba+ca=0\end{matrix}\right.\)
Tính \(A=\left(a-1\right)^{2019}+\left(b-1\right)^{2020}+\left(c-1\right)^{2021}\)
Bài 2 Tìm a,b,c ∈Z sao cho
\(\left(x+b\right)\left(x+c\right)=\left(x+a\right)\left(x-4\right)-7\)
Bài 3 Tìm a,b,c sao cho
\(x^3+ax^{2\:}+bx+c=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
Chi x,y,z khác nhau thỏa mãn x+y+z=2018 Tính giá trị biểu thức \(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Giúp mik vs ạ mik tick cho