Tính diện tích S của miền hình phẳng giới hạn bởi đồ thị của hàm số f x = a x 3 + b x 2 + c , các đường thẳng x = − 1 , x = 2 và trục hoành (miền gạch chéo cho trong hình vẽ).
A. S = 51 8
B. S = 52 8
C. S = 50 8
D. S = 53 8
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a, x = b(như hình bên).
Hỏi cách tính S nào dưới đây đúng?
A. S = ∫ a b f x d x .
B. S = ∫ a c f x d x + ∫ c b f x d x .
C. S = − ∫ a c f x d x + ∫ c b f x d x .
D. S = ∫ a c f x d x + ∫ c b f x d x .
Cho hàm số y = f x = a x 3 + b x 2 + c x + d a , b , c ∈ ℝ , a ≠ 0 có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y = 4 tại điểm có hoành độ âm và đồ thị của hàm số y = f '(x) cho bởi hình vẽ dưới đây. Tính diện tích S của hình phẳng giới hạn bởi đồ thị (C) và trục hoành.
A. S = 9
B. S = 5 4
C. S = 21 4
D. S = 27 4
Cho hàm số y = f(x) liên tục trên đoạn [a;b] và cắt trục hoành tại điểm x = c (a<c<b) (như hình vẽ bên). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x = a; x = b. Mệnh đề nào dưới đây đúng ?
A. S = ∫ a c f ( x ) d x - ∫ c b f ( x ) d x
B. S = - ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
C. S = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x
D. S = ∫ a b f ( x ) d x
Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x 4 + x 2 , trục hoành, trục tung và đường thẳng x = 1 . Biết S = a 5 + b , a , b ∈ ℚ . Tính a + b
A. a + b = - 1
B. a + b = 1 2
C. a + b = 1 3
D. a + b = 13 3
Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên a ; b trục hoành và hai đường thẳng x = a , x = b a < b cho bởi công thức:
A. S = ∫ a b f x d x
B. S = π ∫ a b f x d x
C. S = π ∫ a b f 2 x d x
D. S = ∫ a b f x d x
Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a<b) được tính theo công thức:
A. S = ∫ a b f ( x ) d x
B. S = b ∫ a b f ( x ) d x
C. S = ∫ a b f ( x ) d x
D. S = ∫ a b f ( x ) d x
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành, đường thẳng x=a, x=b. Hỏi khẳng định nào dưới đây là khẳng định đúng?
A. S = - ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a b f x d x
C. S = ∫ a c f x d x + ∫ c b f x d x
D. S = ∫ a c f x d x + ∫ c b f x d x
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x 2 + 2 x + 1 trục hoành và hai đường thẳng x= -1;x=3
A. S=64/3.
B. S=56/3.
C. S=37/3.
D. S=21.