Diện tích hình phẳng giới hạn bởi đường cong: y = x 2 + 1 , tiếp tuyến với đường cong này tại M(2;5) và trục Oy là:
A. 0
B. 16 3
C. 8 3
D. Kết quả khác
Diện tích S của hình phẳng giới hạn bởi đường (P) y = 2 x 2 parabol tiếp tuyến của (P) tại M (1;2) và trục Oy là
Tính diện tích của hình phẳng giới hạn bởi các đường sau: y = 1 x + 1 ,x=1 và tiếp tuyến với đường y = 1 x + 1 tại điểm (2; 3/2)
Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x 3 – 1 và tiếp tuyến với y = x 3 – 1 tại điểm (-1; -2).
Gọi diện tích hình phẳng giới hạn bởi (P): y = x 2 tiếp tuyến tại A(1;1) và trục Oy bằng S 1 Diện tích hình phẳng giới hạn bởi (P) tiếp tuyến tại A và trục Ox bằng S 2 Khi đó, tỉ số S 1 S 2 bằng:
A. 1/4
B. 4.
C. 1/3
D. 3.
Tính thể tích V của vật thể tròn xoay sinh ra bởi hình phẳng giới hạn bởi đường cong y = x , trục tung và đường thẳng y=2 quay quanh trục Oy.
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của A cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ).Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và 2 đường thẳng x = 0; x=2 có diện tích bằng
A. 2/5
B. 1/9
C. 2/9
D. 1/5