\(=\dfrac{1\cdot2\cdot...\cdot2019}{2\cdot3\cdot...\cdot2020}=\dfrac{1}{2020}\)
\(=\dfrac{1\cdot2\cdot...\cdot2019}{2\cdot3\cdot...\cdot2020}=\dfrac{1}{2020}\)
A = \(\dfrac{-19}{9}\times\dfrac{1}{2}-\dfrac{4}{11}\times\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)\)
B = \(\left(-\dfrac{15}{6}\right)\div\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}\times\dfrac{-11}{2}\)
C = \(\dfrac{3}{4}\times\left(-8\right)-\dfrac{1}{3}\times\dfrac{-7}{2}-\dfrac{5}{18}\)
Tính \(\left(1+\dfrac{1}{1+2}\right)\times\left(1+\dfrac{1}{1+2+3}\right)\times\left(1+\dfrac{1}{1+2+3+4}\right)\times...\times\left(1+\dfrac{1}{1+2+3+...+997}\right)\)
C=\(\dfrac{7}{19}\times\dfrac{5}{8}\times\dfrac{-19}{7}\)
D=\(\dfrac{3}{7}\times\dfrac{9}{11}+\dfrac{3}{7}\times\dfrac{2}{11}\)
\(\dfrac{4^2}{3\times5}\times\dfrac{5^2}{4\times6}\times\dfrac{6^2}{5\times7}\times\dfrac{7^2}{6\times8}\)
a) \(\dfrac{-2}{15}\times x=\dfrac{-2}{7}\) b) \(\dfrac{7}{-5}\times x=-3\) c) \(-\dfrac{4}{9}x=\dfrac{1}{2}\) d) \(\dfrac{8}{3}\div x=\dfrac{-3}{8}\)
e) \(x\div\dfrac{3}{-4}=-12\) f) \(\left(-1\right)\div x=\dfrac{-3}{7}+\dfrac{4}{5}\) g)\(\dfrac{4}{11}x-\dfrac{1}{3}=\dfrac{2}{5}\) i) \(\dfrac{-6}{7}-\dfrac{1}{5}x=-4\)
j) \(\dfrac{1}{2}+\dfrac{2}{3}\div7=\dfrac{-1}{3}\) k) \(\dfrac{-5}{2}+x\div7=\dfrac{-1}{3}\) L) \(\dfrac{-3}{2}-\dfrac{1}{4}\div x=-1\)
B= \(\dfrac{\dfrac{2}{3}\times\dfrac{17}{3}-\dfrac{2}{3}\times\dfrac{4}{13}+\dfrac{7}{3}}{\dfrac{9}{2}-\dfrac{9}{4}-\dfrac{9}{5}}\)
Giải hộ với ạ!
C = \(\dfrac{4}{9}\)\(\times\)\(\dfrac{13}{17}\)+\(\dfrac{4}{17}\)\(\times\)\(\dfrac{4}{9}\)+\(\dfrac{2}{9}\)
D = \(\dfrac{8}{19}\)\(\times\)\(\dfrac{5}{11}\)+\(\dfrac{7}{11}\)\(\times\dfrac{8}{19}+\dfrac{12}{11}\times\dfrac{11}{19}\)
\(\dfrac{7}{12}\times\dfrac{2}{3}-\dfrac{5}{3}\times\dfrac{7}{12}+\dfrac{7}{12}\times3\)
\(\dfrac{5}{9}\times\dfrac{7}{13}+\dfrac{5}{9}\times\dfrac{8}{13}-\dfrac{5}{13}\times\dfrac{2}{9}\)