Tìm góc α ∈ π 6 ; π 4 ; π 3 ; π 2 để phương trình cos 2 x + 3 sin 2 x - 2 cos x = 0 tương đương với phương trình cos ( 2 x - α ) = cos x
![]()
![]()
![]()
![]()
Tìm góc α ∈ π 6 ; π 4 ; π 3 ; π 2 để phương trình cos 2 x + 3 sin 2 x - 2 cos x = 0 tương đương với phương trình cos ( 2 x - α ) = cos x
![]()
![]()
![]()
![]()
Gọi α là nghiệm lớn nhất của phương trình 3.cos x + cos 2x – cos 3x + 1 = 2.sin x.sin 2x thuộc khoảng 0 , 2 π . Tính sin α - π 4 .
A . - 2 2
B . 2 2
C . 0
D . 1
Cho góc α cho thỏa 0 < α < π 4 và sin α + cos α = 5 2 Tính P = sin α -cos α .

![]()
![]()
![]()
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Cho cos2α=1/4
Tính A=cos(α+π/6)cos(α-π/6)
Tìm đạo hàm của hàm số sau: y = ( x . sin α + cos α ) ( x . cos α − sin α )
Giải các PT sau:
1. \(\dfrac{\left(2\cos2x-1\right)\left(\sin x-3\right)}{\sin x}=0\)
2.\(\dfrac{3\left(\sin x+\cos x\right)}{\sin x-\cos x}=2+2\cos x\)
3.\(\dfrac{3\left(\sin x+\tan x\right)}{\tan x-\sin x}-2\cos x=2\)
4. \(1+\sin x+\cos x+\sin2x+\cos2x=0\)
5. \(2\sin x\left(1+\cos2x\right)+\sin2x=1+2\cos x\)
Cho hình chóp S.ABCD có SA=a, SB=2a, SC=3a, A S B ^ = B S C ^ = 60 ° , C S A ^ = 90 ° . Gọi α là góc giữa hai đường thẳng SA và BC. Tính cos α.
A. cos α = 7 7
B. cos α = - 7 7
C. cos α = 0
D. cos α = 2 3
Cho sin α+β= \(\dfrac{1}{3}\),tanα=-2tanβ
Tính A= sin(α+\(\dfrac{3\pi}{8}\)).cos(α+\(\dfrac{\pi}{8}\))+sin(β-\(\dfrac{5\pi}{12}\)).sin(β-\(\dfrac{\pi}{12}\))