Đáp án D
Dùng công thức cos a.cos b+ sin a. sin b= cos (a-b) để biến đổi phương trình không chứa
α
về dạng giống phương trình có chứa
α
Ta có
Đáp án D
Dùng công thức cos a.cos b+ sin a. sin b= cos (a-b) để biến đổi phương trình không chứa
α
về dạng giống phương trình có chứa
α
Ta có
Tìm góc α ∈ π 6 ; π 4 ; π 3 ; π 2 để phương trình cos 2 x + 3 sin 2 x - 2 cos x = 0 tương đương với phương trình cos ( 2 x - α ) = cos x
Số nghiệm của phương trình sin x . sin 2 x + 2 . sin x . cos 2 x + sin x + cos x sin x + cos x = 3 . cos 2 x trong khoảng - π , π là:
A. 2
B. 4
C. 3
D. 5
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
Số nghiệm thuộc khoảng - 4 π 3 ; π 2 của phương trình cos ( π + x ) + 3 sin x = sin 3 x - 3 π 2 là
A. 6.
B. 2.
C. 4.
D. 3.
Cho cos2α=1/4
Tính A=cos(α+π/6)cos(α-π/6)
Tìm số nghiệm thuộc khoảng 0 , π của phương trình cos x + π 4 = 0
A. 0
B. 1
C. 2
D. 3
Tìm nghiệm của phương trình lượng giác cos 2 x - cos x = 0 thỏa mãn điều kiện 0 < x < π
A. x = π 2
B. x=0
C. x= π
D. x=2