4. Tính giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-x-1}{2x^2-x}_{ }\)
5. Tính giới hạn:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}_{ }\)
b) \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}_{ }\)
Tính các giới hạn sau:
a) $\underset{x\to 3}{\mathop{\lim }}\,\left( x+2 \right);$
b) $\underset{x\to +\infty }{\mathop{\lim }}\,\left( {{x}^{2}}-x+1 \right).$
Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
Tính giới hạn của lim tiến tới âm vô cùng (-x^3+x^2-x+1)
tính giới hạn lim(x→0)\(\dfrac{ }{\dfrac{2\sqrt{2x+1}-\sqrt[3]{x^2+x+8}}{x}}\)
=\(\dfrac{a}{b}\)
tính a-2b=?
tính giới hạn
a) \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+8}-4}{x-4}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{\sqrt{4x+1}-3}\)
c) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{2-\sqrt{x+2}}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+10}-4}{3x-9}\)
b) \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{4x+8}-6}{x^2-9x+14}\)
c) \(\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{2x^2-9x-5}\)
1 tính giới hạn
\(\overset{lim}{x\rightarrow2}\dfrac{\sqrt[3]{2-5\text{x}}+2}{x-2}\)
2. cho tứ diện ABCD dều có cạnh bằng a
a, tings góc giữa 2 đường thẳng AB vad CD, AD và BC
b, tính giữa các vectơ AC và AB, AC và DA
I. Cho cấp số nhân (un) với u3 = 3 và u4 = 10.
1. Tính u1 và q
2. Viết số hạng tổng quát của cấp số nhân
II. Tính giới hạn của các hàm số sau
1. \(\lim\limits_{ }\dfrac{-3n^2+2n-2022}{3n^2-2022}\)
2. \(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}\)
III. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, O là giao điểm của AC và BD, cạnh bên SA = SB = SC = a
1. Chứng minh SO \(\perp\) (ABCD)
2. Tính khoảng cách từ S đến (ABCD)
Giải giúp mình nhé. Cảm ơn các bạn rất nhiều.