Đặt D = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) + ...... + \(\dfrac{1}{2^{2019}}\)
⇔ 2D = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + ...... + \(\dfrac{1}{2^{2018}}\)
⇔ D = 1 - \(\dfrac{1}{2^{2019}}\)
⇒ A = (1 - \(\dfrac{1}{2^{2019}}\)) : (1 - \(\dfrac{1}{2^{2019}}\))
⇒ A = 1