a: \(=x^2-2x+1\)
b: \(=y^2-6y+9\)
c: \(=a^2+4ab+4b^2\)
`a, = x^2 - 2x +1`
`b, = 9 - 6y + y^2`
`c, = a^2 + 4ab + 4b^2`
tính
a) (x-1)²=x^2-2x+1
b) (3-y)²=y^2-6y+9
c) (a+2b)²=a^2+4ab+4b^2.
a: \(=x^2-2x+1\)
b: \(=y^2-6y+9\)
c: \(=a^2+4ab+4b^2\)
`a, = x^2 - 2x +1`
`b, = 9 - 6y + y^2`
`c, = a^2 + 4ab + 4b^2`
tính
a) (x-1)²=x^2-2x+1
b) (3-y)²=y^2-6y+9
c) (a+2b)²=a^2+4ab+4b^2.
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
bài 1: Cho : x+y= 3 . tính giá trị biểu thức:
A= x^2+2xy+y^2= 4x-4y+1
bài 2:cho a^2+b^2+c^2= m. tính giá trị biểu thức :
B= (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
Cho x+y = 3. Tính giá trị biểu thwucs A= x^2+2xy+y^2-4x-4y+1
Cho a2+b2+c2 =m Tính giá trị của biểu thức sau A=( 2a+2b-c)^2 + (2b+2c-a)^2 +(2c+2a-b)^2
Tính gt của biểu thức:
A. Cho x+y=1. Tính x^3+y^3+3xy
B. Cho x-y=1. Tính x^3-y^3-3xy
C. Cho a+b =1. Tính M= a^3+b^3+3ab(a^2+b^2)+6a^2b^2(a+b)
D. Cho x+y= 2 và x^2+y^2=10. Tính x^3+y^3
bài 1: Cho : x+y= 3 . tính giá trị biểu thức: A= x^2+2xy+y^2 - 4x-4y+1
bài 2:cho a^2+b^2+c^2= m. tính giá trị biểu thức : B= (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
Tính giá trị biểu thức:
a) M = (a - 2b)( a 2 + 2ab + 4 b 2 ) + ( 2 b - a ) 3 tại a = -1; b = 2;
b) N = (2xy - 2)(2xy + 3) - ( 1 - 2 xy ) 2 tại x = 1 2 ; y = -1.
a) Cho \(x-y=1\), tính \(A=x^3-y^3-3xy\)
b) Cho \(x-y=2\), tính \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
c) Cho \(a+b=1\), tính \(C=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
1. Cho a,b,c,d dương thỏa mãn; a4 +b4 +c4 +d4 =4abcd
Tính M= a2006 +b2007 -c2006 -d2007
2. Cho a,b thỏa mãn a3 +2b2 -4b+3=0 và a2 +a2b2 -2b=0
Tính P=a2 +b2
3.Cho a2 +a +1=0. Tính
P= a2008 + (1/a2008)
4.Cho các số x,y,z thỏa mãn điều kiện: x+y+z=1 và x3 +y3 +z3 =1.
Tính A= x2007 +y2007 +z2007.
5.cho a,b,c là 3 số đôi một khác nhau thỏa mãn:
a+(1/b)= b+(1/c)= c+(1/a)
Tính P=abc
Bài 1.Cho \(x+y+z=0\)
Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(xy+yz+zx=0\)
Bài 3. Cho \(3x-y=2z\)
\(2x+y=7z\)
Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)
Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)
Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)
Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)
Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)