\(-2^2+2.\left(-\dfrac{2}{3}\right)+5\dfrac{1}{3}\)
= \(-4+\dfrac{-4}{3}+5+\dfrac{1}{3}\)
= \(-4+\left(-1\right)+5\)
= 0
Ta có: \(-2^2+2\cdot\left(\dfrac{-2}{3}\right)+5\dfrac{1}{3}\)
\(=-4+\dfrac{-4}{3}+\dfrac{16}{3}\)
\(=-4+4\)
=0
\(-2^2+2.\left(-\dfrac{2}{3}\right)+5\dfrac{1}{3}\)
= \(-4+\dfrac{-4}{3}+5+\dfrac{1}{3}\)
= \(-4+\left(-1\right)+5\)
= 0
Ta có: \(-2^2+2\cdot\left(\dfrac{-2}{3}\right)+5\dfrac{1}{3}\)
\(=-4+\dfrac{-4}{3}+\dfrac{16}{3}\)
\(=-4+4\)
=0
Bài 1: Tính một cách hợp lí
d) (\(^{2^2}\) : \(\dfrac{4}{3}\) - \(^{\dfrac{1}{2}}\) ) x \(\dfrac{6}{5}\) - 17
h) \(\dfrac{\left(-1\right)^3}{15}\) + \(\left(-\dfrac{2}{3}\right)^2\) : \(2\dfrac{2}{3}\) - \(\left|-\dfrac{5}{6}\right|\)
k) \(\dfrac{2.6^9-2^5.18^4}{2^2.6^8}\)
n) 3 - \(\left(-\dfrac{7}{8}\right)^0\) + \(\left(\dfrac{1}{2}\right)^3\) . 16
Mg giải gấp giúp mình ạ
\(\left(\dfrac{-2}{5}\right)^2\) . \(|\dfrac{1}{3}-\dfrac{3}{5}|\) -\(\dfrac{2}{5}\) \(\sqrt{\dfrac{1}{25}}\) + 1\(\dfrac{1}{3}\)
Tính giúp mik nha, mik đang cần gấp
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
tính bằng cách hợp lí nhất:
\(18\dfrac{1}{3}.\dfrac{2}{5}-3\dfrac{1}{3}.\dfrac{2}{5}\)
Tính giá trị của biểu thức sau:
A=\(\dfrac{2}{3}\) x\(^2\)y\(^3\)-\(\dfrac{5}{3}\) x\(^2\)y\(^3\)+\(\dfrac{7}{2}\) x\(^{ }\)\(^2\)y\(^3\)+5 tại x=-1,y=-1
tính một cách hợp lí
f) \(\dfrac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\) g) \(\left(\dfrac{-3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
Tính
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}\)
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
Tính:
\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)