31(xyzt+xy+xt+zt+1)=40(yzt+y+t)31(xyzt+xy+xt+zt+1)=40(yzt+y+t)
⇒xyzt+xy+xt+zt+1yzt+y+t=4031⇒xyzt+xy+xt+zt+1yzt+y+t=4031
⇒x(yzt+y+t)+zt+1yzt+y+t=4031⇒x(yzt+y+t)+zt+1yzt+y+t=4031
⇒x+zt+1yzt+y+t=4031⇒x+zt+1yzt+y+t=4031
⇒x+1(yzt+y+tzt+1)=4031⇒x+1(yzt+y+tzt+1)=4031
⇒x+1(y+tzt+1)=4031⇒x+1(y+tzt+1)=4031
⇒x+1y+1(zt+1t)=4031⇒x+1y+1(zt+1t)=4031
⇒x+1y+1z+1t=4031⇒x+1y+1z+1t=4031
4031<6231=2⇒x<24031<6231=2⇒x<2
Với x = 0; có :
1y+1z+1t=40311y+1z+1t=4031
⇒y+1z+1t=3140⇒y+1z+1t=3140
Mà 3140<1⇒y<1⇒y=03140<1⇒y<1⇒y=0
⇒1z+1t=3140⇒1z+1t=3140
⇒z+1t=4031⇒z+1t=4031
⋅z=0⇒t=3140∉Z⋅z=0⇒t=3140∉Z(Loại )
⋅z=1⇒t=319∉Z⋅z=1⇒t=319∉Z(Loại )
Với x=1;x=1;ta có :
1y+1z+1t=4031−11y+1z+1t=4031−1
⇒1y+1z+1t=931⇒1y+1z+1t=931
⇒y+1z+1t=319⇒y+1z+1t=319
319<369=4⇒y<4319<369=4⇒y<4
⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z(Loại)
⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z(Loại)
⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z(Loại )
⋅y=3⇒z+1t=94⋅y=3⇒z+1t=94
94<3⇒z<394<3⇒z<3
z=0⇒t=49∉Zz=0⇒t=49∉Zz=1⇒t=45∉Zz=1⇒t=45∉Zz=2⇒t=4z=2⇒t=4( Thỏa mãn )
Vậy x=1;y=3;z=2;t=4.