ta có
\(\dfrac{x}{4}=\dfrac{y}{5}\Rightarrow\dfrac{x}{12}=\dfrac{y}{15}\)
\(\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{x}{12}=\dfrac{y}{15}=\dfrac{z}{10}\) và \(\text{x − y + z = 21}\)
ADTC dãy tỉ số bằng nhau ta có
\(\dfrac{x}{12}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x-y+z}{12-15+10}=\dfrac{21}{7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.3=36\\y=15.3=45\\z=10.3=30\end{matrix}\right.\)
`=> x/12 = y/15 = z/10`
Áp dụng t/c dãy tỉ số bằng nhau:
`x/12 = y/15 = z/10 = (x-y+z)/(12-15+10) = 21/7 = 3`
`=> x/12 = 3 => x = 36`
`=> y/15 = 3 => y = 45`
`=> z/10 = 3 => z = 30`
\(\dfrac{x}{4}=\dfrac{y}{5}->x=\dfrac{4}{5}y\) ; \(\dfrac{y}{3}=\dfrac{z}{2}->z=\dfrac{2}{3}y\)
Ta có \(x-y+z=21\)
\(\Leftrightarrow\) \(\dfrac{4}{5}y-y+\dfrac{2}{3}y=21\)
\(\Leftrightarrow\) \(y\cdot\left(\dfrac{4}{5}-1+\dfrac{2}{3}\right)=21\)
\(\Leftrightarrow\) \(y\cdot\dfrac{7}{15}=21\Rightarrow y=21:\dfrac{7}{15}=45\)
--> \(z=\dfrac{2}{3}y=\dfrac{2}{3}\cdot45=30\)
--> \(x=\dfrac{4}{5}y=\dfrac{4}{5}\cdot45=36\)