Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tiến Đạt

tìm x,y\(\in N\)biết : 36 -y2=8(x-2010)2

Lê Anh Tú
22 tháng 2 2018 lúc 17:11

Ta có: 36-y2=8(x-2010)2. => y2=36-8(x-2010)2 

+)Nếu y=0 (

\(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)

\(\Rightarrow\left(x-2010\right)^2=4,5\)ko thỏa mãn vì )

+)Nếu y khác 0

\(\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\) 

\(\Rightarrow8\left(x-2010\right)^2>36\)

\(\Rightarrow\left(x-2010\right)^2>4,5\)

Mà (x-2010)2 là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\) 

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\) 

 \(\Rightarrow y=\sqrt{36}=6\Rightarrow x=2010;y=6\)(thỏa mãn)

Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)

Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x- 2010=-2

\(\Rightarrow\orbr{\begin{cases}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{cases}}\)

\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4=2^2\Rightarrow y=2\)(do y thuộc N) 

\(\Rightarrow\orbr{\begin{cases}x=2010\\y=6\end{cases};\orbr{\begin{cases}x=2012\\y=4\end{cases};\orbr{\begin{cases}2008\\y=2\end{cases}}}}\)


Các câu hỏi tương tự
piojoi
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
nguyen thi bao tien
Xem chi tiết
Cù Thu Trang
Xem chi tiết
Mai Ngọc
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết
Phạm Tiến Sĩ
Xem chi tiết
pham thi thu
Xem chi tiết
Akame
Xem chi tiết